留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

考慮圍壓效應的凍土三階段強度準則

梁靖宇 路德春 沈萬濤 齊吉琳

梁靖宇, 路德春, 沈萬濤, 齊吉琳. 考慮圍壓效應的凍土三階段強度準則[J]. 工程力學, 2023, 40(10): 169-178. doi: 10.6052/j.issn.1000-4750.2022.01.0096
引用本文: 梁靖宇, 路德春, 沈萬濤, 齊吉琳. 考慮圍壓效應的凍土三階段強度準則[J]. 工程力學, 2023, 40(10): 169-178. doi: 10.6052/j.issn.1000-4750.2022.01.0096
LIANG Jing-yu, LU De-chun, SHEN Wan-tao, QI Ji-lin. THREE-STAGE STRENGTH CRITERION FOR FROZEN SOIL INCORPORATING THE CONFINING PRESSURE EFFECT[J]. Engineering Mechanics, 2023, 40(10): 169-178. doi: 10.6052/j.issn.1000-4750.2022.01.0096
Citation: LIANG Jing-yu, LU De-chun, SHEN Wan-tao, QI Ji-lin. THREE-STAGE STRENGTH CRITERION FOR FROZEN SOIL INCORPORATING THE CONFINING PRESSURE EFFECT[J]. Engineering Mechanics, 2023, 40(10): 169-178. doi: 10.6052/j.issn.1000-4750.2022.01.0096

考慮圍壓效應的凍土三階段強度準則

doi: 10.6052/j.issn.1000-4750.2022.01.0096
基金項目: 國家自然科學基金項目(52108294,41972279,52025084);北京市博士后基金項目(2021-zz-116)
詳細信息
    作者簡介:

    梁靖宇(1988?),男,河北人,講師,博士后,主要從事巖土材料工程特性及其強度理論研究(E-mail: liangjy@bucea.edu.cn)

    路德春(1977?),男,黑龍江人,教授,博士,博導,主要從事巖土與城市地下工程領域的研究(E-mail: dechun@bjut.edu.cn)

    沈萬濤(1997?),男,山東人,碩士生,主要從事凍土強度特性研究(E-mail: 2108590020142@stu.bucea.edu.cn)

    通訊作者:

    齊吉琳(1969?),男,山東人,教授,博士,主要從事寒區巖土工程領域研究(E-mail: jilinqi@bucea.edu.cn)

  • 中圖分類號: TU445

THREE-STAGE STRENGTH CRITERION FOR FROZEN SOIL INCORPORATING THE CONFINING PRESSURE EFFECT

  • 摘要: 凍土抗剪強度的圍壓效應是寒區工程建設與凍結法施工工程承載能力分析的基礎與前提。隨著圍壓的增大,現有凍土抗剪強度試驗結果既有先增大后減小的兩階段試驗規律,也有先增大后減小再增大的三階段試驗規律。為描述凍土抗剪強度的特殊規律,該文對土與冰的特性分別進行了分析,認為凍土的抗剪強度所呈現的多階段發展規律,不僅因為其繼承了未凍土的強度特征,還由于凍土中孔隙冰的存在對抗剪強度有特殊的貢獻?;诖?,該文將凍土抗剪強度分解為反映黏聚摩擦特性的基準強度與由于存在孔隙冰而表現出的特殊貢獻強度。通過利用冪函數強度表達式作為凍土的基準強度,并進一步構建描述凍土強化弱化規律的貢獻強度,從而發展得出考慮凍土復雜圍壓效應的三階段強度準則。對不同類型凍土的兩階段與三階段試驗結果進行的預測表明,所建立的凍土三階段強度準則能夠合理地描述凍土的抗剪強度變化規律。
  • 圖  1  兩階段抗剪強度試驗數據

    Figure  1.  Two-stage shear strength test data

    圖  2  三階段抗剪強度試驗數據

    Figure  2.  Three-stage shear strength test data

    圖  3  基準強度的冪律規律

    Figure  3.  Power law of the base strength

    圖  4  貢獻強度曲線

    Figure  4.  Contributed strength curves

    圖  5  凍土的強度線

    Figure  5.  Strength curves for frozen soils

    圖  6  凍結蘭州砂土試驗數據與預測結果的對比

    Figure  6.  Comparisons between test data and predictions for frozen Lanzhou sand

    圖  7  凍結粉土試驗數據與預測結果的對比

    Figure  7.  Comparisons between test data and predictions for frozen Q-T silt

    圖  8  凍結蘭州粉土試驗數據與預測結果的對比

    Figure  8.  Comparisons between test data and predictions for frozen Lanzhou silt

    圖  9  凍結OWS與WLT的試驗數據與預測結果的對比

    Figure  9.  Comparisons between test data and predictions for frozen OWS and WLT

    圖  10  凍結細砂的試驗數據與預測結果的對比

    Figure  10.  Comparison between test data and predictions for frozen fine sandy soil

    圖  11  冰磧土的試驗數據與預測結果的對比

    Figure  11.  Comparisons between test data and predictions for frozen moraine soil

    表  1  預測兩階段抗剪強度試驗數據所采用參數

    Table  1.   Parameters for predicting the two-stage shear strength test data

    試樣類型凍結溫度/
    (℃)
    界限平均
    應力σpm
    界限剪
    應力σqm
    三向拉伸
    強度σ0
    參數
    k
    蘭州砂土[10]?2.08.543.790.31.40
    ?3.511.524.721.0
    ?5.0 15.226.211.5
    ?7.015.756.993.0
    Q-T粉土[16]?2 14.0012.301.53.00
    ?4 14.7513.402.6
    ?6 15.5015.303.5
    蘭州粉土[17]?6 4.375.910.40.55
    ?10 4.738.350.5
    ?15 6.2011.200.6
    下載: 導出CSV

    表  2  預測三階段抗剪強度試驗數據所采用參數

    Table  2.   Parameters for predicting the three-stage shear strength test data

    試樣類型凍結溫度/
    (℃)
    界限平均
    應力σpm
    界限剪
    應力σqm
    三向拉伸
    強度σ0
    參數
    Mf
    參數
    n
    參數
    k
    OWS[18]?1059.0054.006.450.1730.6913.3
    WLT[18]?10 17.9016.3030.000.0340.6062.0
    細砂[19]?2 2.301.142.080.1000.3501.4
    冰磧土[20]?0.5 2.551.540.800.2301.0001.5
    ?2.03.173.491.060.265
    ?6.0 4.086.151.160.387
    下載: 導出CSV

    黑人大屌丝逼逼
  • [1] LAI Y M, XU X T, DONG Y H, et al. Present situation and prospect of mechanical research on frozen soils in China [J]. Cold Regions Science and Technology, 2013, 87: 6 ? 18. doi: 10.1016/j.coldregions.2012.12.001
    [2] ZHANG Y G, LIU S H, LU Y, et al. Experimental study of the mechanical behavior of frozen clay–gravel composite [J]. Cold Regions Science and Technology, 2021, 189: 103340. doi: 10.1016/j.coldregions.2021.103340
    [3] 朱夢杰, 任亮, 李宏男, 等. 基于iBeam3單元逆有限元法的凍土區管道變形研究[J]. 工程力學, 2022, 39(10): 61 ? 67. doi: 10.6052/j.issn.1000-4750.2021.05.0334

    ZHU Mengjie, REN Liang, LI Hongnan, et al. Research on pipeline deformation in permafrost region using inverse finite element method based on iBeam3 element [J]. Engineering Mechanics, 2022, 39(10): 61 ? 67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0334
    [4] 鄭先昌, 鄭偉鋒. 中國南極中山站區凍土融沉和凍脹模擬試驗及基礎對策研究[J]. 工程力學, 2010, 27(增刊 1): 154 ? 158.

    ZHENG Xianchang, ZHENG Weifeng. Freeze-thaw and freeze-heaving experiment and the fundamental countermeasure of the China Zhongshan station in the south pole [J]. Engineering Mechanics, 2010, 27(Suppl 1): 154 ? 158. (in Chinese)
    [5] KIM S Y, HONG W T, LEE J S. Role of the coefficient of uniformity on the California bearing ratio, penetration resistance, and small strain stiffness of coarse arctic soils [J]. Cold Regions Science and Technology, 2019, 160: 230 ? 241. doi: 10.1016/j.coldregions.2019.02.012
    [6] 謝劍, 閆明亮, 劉洋. 極地低溫下凍融作用對混凝土斷裂性能的影響[J]. 工程力學, 2023, 40(2): 202 ? 212. doi: 10.6052/j.issn.1000-4750.2021.08.0656

    XIE Jian, YAN Mingliang, LIU Yang. Effect of freezing and thawing on fracture performance of concrete at polar low temperature [J]. Engineering Mechanics, 2023, 40(2): 202 ? 212. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.08.0656
    [7] KANG Y S, HOU C C, LI K J, et al. Evolution of temperature field and frozen wall in sandy cobble stratum using LN2 freezing method [J]. Applied Thermal Engineering, 2021, 185: 116334. doi: 10.1016/j.applthermaleng.2020.116334
    [8] 榮傳新, 王秀喜, 程樺. 深厚沖積層凍結壁和井壁共同作用機理研究[J]. 工程力學, 2009, 26(3): 235 ? 239.

    RONG Chuanxin, WANG Xiuxi, CHENG Hua. A study on interaction mechanism of frozen soil wall and shaft lining in deep alluvium [J]. Engineering Mechanics, 2009, 26(3): 235 ? 239. (in Chinese)
    [9] QI J L, WANG F Y, PENG L Y, et al. Model test on the development of thermal regime and frost heave of a gravelly soil under seepage during artificial freezing [J]. Cold Regions Science and Technology, 2022, 196: 103495. doi: 10.1016/j.coldregions.2022.103495
    [10] 馬巍, 吳紫汪, 盛煜. 圍壓對凍土強度特性的影響[J]. 巖土工程學報, 1995, 5(17): 7 ? 11.

    MA Wei, WU Ziwang, SHENG Yu. Effect of confining pressure on strength behaviour of frozen soil [J]. Chinese Journal of Geotechnical Engineering, 1995, 5(17): 7 ? 11. (in Chinese)
    [11] 牛亞強, 賴遠明, 王旭, 等. 初始含水率對凍結粉質黏土變形和強度的影響規律研究[J]. 巖土力學, 2016, 37(2): 499 ? 506.

    NIU Yaqiang, LAI Yuanming, WANG Xu, et al. Research on influences of initial water content on deformation and strength behaviors of frozen silty clay [J]. Rock and Soil Mechanics, 2016, 37(2): 499 ? 506. (in Chinese)
    [12] 齊吉琳, 黨博翔, 徐國方, 等. 凍土強度研究的現狀分析[J]. 北京建筑大學學報, 2016, 32(3): 89 ? 95. doi: 10.3969/j.issn.1004-6011.2016.03.015

    QI Jilin, DANG Boxiang, XU Guofang, et al. A state of the art for strength of frozen soils [J]. Journal of Beijing University of Civil Engineering and Architecture, 2016, 32(3): 89 ? 95. (in Chinese) doi: 10.3969/j.issn.1004-6011.2016.03.015
    [13] ZHAO J L, ZHANG P, YANG X, et al. On the uniaxial compression strength of frozen gravelly soils [J]. Cold Regions Science and Technology, 2020, 171: 102965. doi: 10.1016/j.coldregions.2019.102965
    [14] LIAO M K, LAI Y M, WANG C. A strength criterion for frozen sodium sulfate saline soil [J]. Canadian Geotechnical Journal, 2016, 53(7): 1176 ? 1185. doi: 10.1139/cgj-2015-0569
    [15] LI X, YAN Y, JI S Y. Mechanical properties of frozen ballast aggregates with different ice contents and temperatures [J]. Construction and Building Materials, 2022, 317: 125893. doi: 10.1016/j.conbuildmat.2021.125893
    [16] LAI Y M, YANG Y G, CHANG X X, et al. Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics [J]. International Journal of Plasticity, 2010, 26(10): 1461 ? 1484. doi: 10.1016/j.ijplas.2010.01.007
    [17] 張德, 劉恩龍, 劉星炎, 等. 凍結粉土強度準則探討[J]. 巖土力學, 2018, 39(9): 3237 ? 3245.

    ZHANG De, LIU Enlong, LIU Xingyan, et al. Investigation on strength criterion for frozen silt soils [J]. Rock and Soil Mechanics, 2018, 39(9): 3237 ? 3245. (in Chinese)
    [18] CHAMBERLAIN E, GROVES C, PERHAM R. The mechanical behaviour of frozen earth materials under high pressure triaxial test conditions [J]. Géotechnique, 1972, 22(3): 469 ? 483.
    [19] XU X T, LAI Y M, DONG Y H, et al. Laboratory investigation on strength and deformation characteristics of ice-saturated frozen sandy soil [J]. Cold Regions Science and Technology, 2011, 69(1): 98 ? 104. doi: 10.1016/j.coldregions.2011.07.005
    [20] LUO F, LIU E L, ZHU Z Y. A strength criterion for frozen moraine soils [J]. Cold Regions Science and Technology, 2019, 164: 102786.
    [21] LADE POUL V. Modelling the strengths of engineering materials in three dimensions [J]. Mechanics of Cohesive-Frictional Materials, 1997, 2(4): 339 ? 356. doi: 10.1002/(SICI)1099-1484(199710)2:4<339::AID-CFM36>3.0.CO;2-R
    [22] XIAO Y, MENG M Q, CHEN H, et al. Nonlinear regression model for peak-failure strength of rockfill materials in general stress space [J]. Geoscience Frontiers, 2018, 9(6): 1699 ? 1709.
    [23] 姚仰平, 路德春, 周安楠, 等. 廣義非線性強度理論及其變換應力空間[J]. 中國科學E輯: 工程科學 材料科學, 2004, 34(11): 1283 ? 1299.

    YAO Yangping, LU Dechun, ZHOU Annan, et al. Generalized non-linear strength theory and transformed stress space [J]. Science in China Series E: Engineering and Materials Science, 2004, 34(11): 1283 ? 1299. (in Chinese)
    [24] 黃景琦, 杜修力, 馬超, 等. 巖石三維強度準則的研究[J]. 工程力學, 2018, 35(3): 30 ? 40. doi: 10.6052/j.issn.1000-4750.2017.03.0216

    HUANG Jingqi, DU Xiuli, MA Chao, et al. Study on three-dimensional strength criterion for rocks [J]. Engineering Mechanics, 2018, 35(3): 30 ? 40. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.03.0216
    [25] FISH A M. Strength of frozen soil under a combined stress state [C]// Proceedings of 6th International Symposium on Ground Freezing. Rotterdam, Netherlands: A. A. Balkema, 1991: 135 ? 145.
    [26] XU X T, WANG B X, FAN C X, et al. Strength and deformation characteristics of silty clay under frozen and unfrozen states [J]. Cold Regions Science and Technology, 2020, 172: 102982.
    [27] YANG Y G, LAI Y M, LI J B. Laboratory investigation on the strength characteristic of frozen sand considering effect of confining pressure [J]. Cold Regions Science and Technology, 2010, 60(3): 245 ? 250. doi: 10.1016/j.coldregions.2009.11.003
    [28] CHEN D, WANG D Y, MA W, et al. A strength criterion for frozen clay considering the influence of stress Lode angle [J]. Canadian Geotechnical Journal, 2019, 56(11): 1557 ? 1572. doi: 10.1139/cgj-2018-0054
    [29] LAI Y M, LIAO M K, HU K. A constitutive model of frozen saline sandy soil based on energy dissipation theory [J]. International Journal of Plasticity, 2016, 78: 84 ? 113. doi: 10.1016/j.ijplas.2015.10.008
    [30] ZHANG D, LIU E L, LIU X Y, et al. A new strength criterion for frozen soils considering the influence of temperature and coarse-grained contents [J]. Cold Regions Science and Technology, 2017, 143: 1 ? 12. doi: 10.1016/j.coldregions.2017.08.006
    [31] QI J L, MA W. A new criterion for strength of frozen sand under quick triaxial compression considering effect of confining pressure [J]. Acta Geotechnica, 2007, 2(3): 221 ? 226. doi: 10.1007/s11440-007-0034-z
    [32] 張德, 劉恩龍, 劉星炎, 等. 基于修正Mohr-Coulomb屈服準則的凍結砂土損傷本構模型[J]. 巖石力學與工程學報, 2018, 37(4): 978 ? 986.

    ZHANG De, LIU Enlong, LIU Xingyan, et al. A damage constitutive model for frozen sandy soils based on modified Mohr-Coulomb yield criterion [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 978 ? 986. (in Chinese)
    [33] LIU X Y, LIU E L, ZHANG D, et al. Study on strength criterion for frozen soil [J]. Cold Regions Science and Technology, 2019, 161: 1 ? 20. doi: 10.1016/j.coldregions.2019.02.009
    [34] YANG Y G, LAI Y M, CHANG X X. Laboratory and theoretical investigations on the deformation and strength behaviors of artificial frozen soil [J]. Cold Regions Science and Technology, 2010, 64(1): 39 ? 45. doi: 10.1016/j.coldregions.2010.07.003
    [35] 杜修力, 馬超, 路德春. 巖土類材料的靜水壓力效應[J]. 巖石力學與工程學報, 2015, 34(3): 572 ? 582.

    DU Xiuli, MA Chao, LU Dechun. Effect of hydrostatic pressure on geomaterials [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 572 ? 582. (in Chinese)
    [36] ENGEMANN S, REICHERT H, DOSCH H, et al. Interfacial melting of ice in contact with SiO2 [J]. Physical Review Letters, 2004, 92(20): 205701. doi: 10.1103/PhysRevLett.92.205701
    [37] ROBERT R. Why is ice slippery? [J]. Physics Today, 2005, 58(12): 50 ? 55. doi: 10.1063/1.2169444
    [38] COLBECK S C. Pressure melting and ice skating [J]. American Journal of Physics, 1995, 63(10): 888 ? 890. doi: 10.1119/1.18028
  • 加載中
圖(11) / 表(2)
計量
  • 文章訪問數:  291
  • HTML全文瀏覽量:  94
  • PDF下載量:  53
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-01-20
  • 修回日期:  2022-04-21
  • 網絡出版日期:  2022-05-12
  • 刊出日期:  2023-10-10

目錄

    /

    返回文章
    返回