留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于防屈曲鎳鈦SMA棒的自復位隅撐鋼框架:構件試驗和結構行為

邱燦星 姜天緣 劉家旺 杜修力

邱燦星, 姜天緣, 劉家旺, 杜修力. 基于防屈曲鎳鈦SMA棒的自復位隅撐鋼框架:構件試驗和結構行為[J]. 工程力學, 2023, 40(10): 33-46. doi: 10.6052/j.issn.1000-4750.2022.01.0095
引用本文: 邱燦星, 姜天緣, 劉家旺, 杜修力. 基于防屈曲鎳鈦SMA棒的自復位隅撐鋼框架:構件試驗和結構行為[J]. 工程力學, 2023, 40(10): 33-46. doi: 10.6052/j.issn.1000-4750.2022.01.0095
QIU Can-xing, JIANG Tian-yuan, LIU Jia-wang, DU Xiu-li. SELF-CENTERING KNEE-BRACED STEEL FRAMES WITH BUCKLING-RESTRAINED NITI SMA BARS: COMPONENT TEST AND STRUCTURAL BEHAVIOR[J]. Engineering Mechanics, 2023, 40(10): 33-46. doi: 10.6052/j.issn.1000-4750.2022.01.0095
Citation: QIU Can-xing, JIANG Tian-yuan, LIU Jia-wang, DU Xiu-li. SELF-CENTERING KNEE-BRACED STEEL FRAMES WITH BUCKLING-RESTRAINED NITI SMA BARS: COMPONENT TEST AND STRUCTURAL BEHAVIOR[J]. Engineering Mechanics, 2023, 40(10): 33-46. doi: 10.6052/j.issn.1000-4750.2022.01.0095

基于防屈曲鎳鈦SMA棒的自復位隅撐鋼框架:構件試驗和結構行為

doi: 10.6052/j.issn.1000-4750.2022.01.0095
基金項目: 國家自然科學基金項目(51808317,52178267)
詳細信息
    作者簡介:

    姜天緣(1997?),男,安徽人,碩士生,主要從事地震工程領域研究 (E-mail: 13757474328@qq.com)

    劉家旺(1996?),男,河北人,博士生,主要從事地震工程領域研究 (E-mail: m18811044515@163.com)

    杜修力(1962?),男,四川人,教授,博士,博導,主要從事地震工程領域研究 (E-mail: duxiuli@bjut.edu.cn)

    通訊作者:

    邱燦星(1987?),男,江西人,教授,博士,博導,主要從事地震工程、結構振動控制方面的研究 (E-mail: qiucanxing@bjut.edu.cn)

  • 中圖分類號: TU391

SELF-CENTERING KNEE-BRACED STEEL FRAMES WITH BUCKLING-RESTRAINED NITI SMA BARS: COMPONENT TEST AND STRUCTURAL BEHAVIOR

  • 摘要: 隅撐一般安裝于框架梁柱的節點附近。和中心支撐相比,隅撐具有占用空間少、對建筑外觀影響小、安裝更為方便和震后更易更換等優點。超彈性鎳鈦形狀記憶合金(SMA)在常溫下能夠具有“旗幟型”滯回曲線,兼具消能能力和自復位能力,近年來受到地震工程界的廣泛關注。該文選取鎳鈦SMA棒為核心受力構件,利用防屈曲裝置提出了基于防屈曲鎳鈦SMA棒的自復位隅撐(SCKB)。進一步的,以SCKB為關鍵抗震構件,提出了一種新型的抗震韌性鋼結構,即自復位隅撐鋼框架(SCKBF)。加工了縮尺比例的SCKB試件,并開展了往復加載試驗。試驗結果表明,SCKB受拉和受壓時均擁有穩定的“旗幟型”滯回行為。為了評估SCKBF的抗震性能,根據底部剪力法設計了樓層數分別為3層和6層的結構,開展了罕遇地震下的彈塑性時程分析。計算結果表明:SCKBF能夠滿足規范對層間位移轉角限值的要求;并且,結構的震后殘余層間位移角幾乎為零,體現了良好的震后功能可恢復性。該文為進一步的體系試驗和抗震設計也起到了有益的鋪墊。
  • 圖  1  中心支撐框架和隅撐框架

    Figure  1.  Concentrically braced frame and knee braced frame

    圖  2  基于防屈曲鎳鈦SMA棒的自復位隅撐

    Figure  2.  SCKB using buckling-restrained NiTi SMA bar

    圖  3  鎳鈦SMA棒

    Figure  3.  NiTi SMA bar

    圖  4  SCKB的縮尺模型試驗

    Figure  4.  Test of the reduced-scale SCKB

    圖  5  SCKB的滯回行為

    Figure  5.  Hysteretic behavior of SCKB

    圖  6  試驗結束后的SMA棒

    Figure  6.  SMA bar after testing

    圖  7  SCKB的破壞模式

    Figure  7.  Failure mode of SCKBs

    圖  8  SCKBF的變形機制

    Figure  8.  Deformation mechanism of SCKBF

    圖  9  隅撐延性需求與傾角的關系

    Figure  9.  Relationship between ductility demand and inclination angle of knee brace

    圖  10  地震動的加速度反應譜

    Figure  10.  Response spectrum of the ground motion records

    圖  11  隅撐框架的平面圖和立面圖

    Figure  11.  Plan layout and elevation view of the SCKBFs

    圖  12  真實結構中SCKB的構造示意圖

    Figure  12.  Schematic of SCKB within a realistic structure

    圖  13  SCKB的數值模擬

    Figure  13.  Numerical simulation of the SCKB

    圖  14  3層SCKBF的數值模型

    Figure  14.  Numerical model of the 3-story SCKBF

    圖  15  推覆結果

    Figure  15.  Pushover results

    圖  16  隅撐框架在代表性地震動下的響應

    Figure  16.  Seismic performance under representative ground motions

    圖  17  隅撐框架在代表性地震動下的局部行為

    Figure  17.  Local behavior of the SCKBFs under representative ground motion record

    圖  18  最大和殘余層間位移角

    Figure  18.  Maximum and residual interstory drift ratios

    圖  19  最大峰值樓面加速度

    Figure  19.  Maximum floor accelerations

    圖  20  鎳鈦SMA的最大應變

    Figure  20.  Maximum strain of SMA bars

    圖  21  柱內最大應變

    Figure  21.  Maximum strain demands in columns

    圖  22  梁內最大應變

    Figure  22.  Maximum strain demands in beams

    圖  23  豎向分布的位移角

    Figure  23.  Interstory drift ratios over building height

    圖  24  豎向分布的峰值樓面加速度

    Figure  24.  Peak floor accelerations over building height

    表  1  地震動信息

    Table  1.   Information of earthquake ground motions

    編號年份/年震級地震臺站PGA/g持時/s
    EQ0119406.95Imperial Valley-02El Centro Array #90.6253.71
    EQ0219566.80El AlamoEl Centro Array #90.3060.00
    EQ0319766.80Gazli_ USSRKarakyr0.7014.33
    EQ0419796.53Imperial Valley-06Delta0.48100.14
    EQ0519796.53Imperial Valley-06El Centro Array #120.6039.07
    EQ0619806.33Victoria_ MexicoChihuahua0.3526.99
    EQ0719836.36Coalinga-01Parkfield-Gold Hill 6W0.5459.98
    EQ08人工波0.5339.98
    EQ090.58 39.98
    EQ100.42 39.98
    下載: 導出CSV

    表  2  SCKB的強度和剛度

    Table  2.   Strength and stiffness of SCKBs

    力學性能樓層SCKBs
    3層6層
    屈服強度fy /kN1879.1 (+), 1215.5 (?)1376.8 (+), 1903.8 (?)
    2722.4 (+), 998.8 (?)1309.4 (+), 1810.6 (?)
    3411.9 (+), 573.7 (?)1174.6 (+), 1624.2 (?)
    4?972.4 (+), 1344.6 (?)
    5?703.7 (+), 973.1 (?)
    6?365.9 (+), 505.9 (?)
    軸向剛度k/(kN/mm)189.3 (+), 142.9 (?)139.9 (+), 223.8 (?)
    273.4 (+), 117.4 (?)133.1 (+), 212.9 (?)
    342.2 (+), 67.5 (?)119.4 (+), 191.0 (?)
    4?98.8 (+), 158.1 (?)
    5?71.5 (+), 114.4 (?)
    6?37.2 (+), 59.5 (?)
    注:(+)和(?)分別表示受拉和受壓。
    下載: 導出CSV

    表  3  SCKB中鎳鈦SMA棒的截面積

    Table  3.   Cross-sectional area of the NiTi SMA bar in SCKBs /mm2

    樓層結構
    3層6層
    13032.94750.0
    22491.94517.5
    31431.44052.5
    4?3354.9
    5?2427.9
    6?1262.3
    下載: 導出CSV

    黑人大屌丝逼逼
  • [1] MAHIN S A. Lessons from damage to steel buildings during the Northridge earthquake [J]. Engineering Structures, 1998, 20(4/5/6): 261 ? 270. doi: 10.1016/S0141-0296(97)00032-1
    [2] 邱燦星, 杜修力. 一種抗震性能化設計方法及在防屈曲支撐鋼框架結構中的應用[J]. 工程力學, 2022, 39(11): 63 ? 72. doi: 10.6052/j.issn.1000-4750.2021.06.0463

    QIU Canxing, DU Xiuli. A novel performance-based seismic design method and its application in BRB steel frames [J]. Engineering Mechanics, 2022, 39(11): 63 ? 72. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.06.0463
    [3] 郭彥林, 童精中, 周鵬. 防屈曲支撐的型式、設計理論與應用研究進展[J]. 工程力學, 2016, 33(9): 1 ? 14. doi: 10.6052/j.issn.1000-4750.2016.04.ST01

    GUO Yanlin, TONG Jingzhong, ZHOU Peng. Research progress of buckling restrained braces: Types, design methods and applications [J]. Engineering Mechanics, 2016, 33(9): 1 ? 14. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.04.ST01
    [4] 白久林, 金雙雙, 歐進萍. 防屈曲支撐-鋼筋混凝土框架結構基于能量平衡的抗震塑性設計[J]. 建筑結構學報, 2017, 38(1): 125 ? 134. doi: 10.14006/j.jzjgxb.2017.01.014

    BAI Jiulin, JIN Shuangshuang, OU Jinping. Seismic plastic design of buckling-restrained braced-RC frame structures based on energy balance [J]. Journal of Building Structures, 2017, 38(1): 125 ? 134. (in Chinese) doi: 10.14006/j.jzjgxb.2017.01.014
    [5] 周穎, 申杰豪, 肖意. 自復位耗能支撐研究綜述與展望[J]. 建筑結構學報, 2021, 42(10): 1 ? 13. doi: 10.14006/j.jzjgxb.2020.c281

    ZHOU Ying, SHEN Jiehao, XIAO Yi. State-of-the-art on self-centering energy dissipative braces [J]. Journal of Building Structures, 2021, 42(10): 1 ? 13. (in Chinese) doi: 10.14006/j.jzjgxb.2020.c281
    [6] 徐龍河, 謝行思, 李忠獻. 自復位變阻尼耗能支撐的力學原理與性能研究[J]. 工程力學, 2018, 35(1): 201 ? 208. doi: 10.6052/j.issn.1000-4750.2016.09.0729

    XU Longhe, XIE Xingsi, LI Zhongxian. Mechanics and performance study of self-centering variable damping energy dissipation brace [J]. Engineering Mechanics, 2018, 35(1): 201 ? 208. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.09.0729
    [7] 徐龍河, 敬祺軻, 謝行思. 主余震下自復位支撐 RC 框架結構性能研究[J]. 工程力學, 2023, 40(5): 117 ? 124. doi: 10.6052/j.issn.1000-4750.2021.10.0824

    XU Longhe, JING Qike, XIE Xingsi. Performance study on RC frame structures with self-centering braces under main- and after-earthquakes [J]. Engineering Mechanics, 2023, 40(5): 117 ? 124. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.10.0824
    [8] 徐龍河, 劉媛媛, 謝行思. 地震-風耦合作用下鋼框架-自復位支撐筒結構性能研究[J]. 工程力學, 2022, 39(11): 186 ? 195. doi: 10.6052/j.issn.1000-4750.2021.07.0517

    XU Longhe, LIU Yuanyuan, XIE Xingsi. Performance study of steel frame self-centering braced tube structure under coupling action of earthquake and wind [J]. Engineering Mechanics, 2022, 39(11): 186 ? 195. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.07.0517
    [9] LEELATAVIWAT S, SUKSAN B, SRECHAI J, et al. Seismic design and behavior of ductile knee-braced moment frames [J]. Journal of Structural Engineering, 2011, 137(5): 579 ? 588.
    [10] 王鵬, 王湛, 潘建榮, 等. 腋撐式半剛性鋼框架抗側性能試驗與設計方法研究[J]. 建筑結構學報, 2020, 41(增刊 2): 192 ? 201. doi: 10.14006/j.jzjgxb.2020.S2.0022

    WANG Peng, WANG Zhan, PAN Jianrong, et al. Experimental study on lateral resistance behavior of semi-rigid steel frames with knee braces and design method [J]. Journal of Building Structures, 2020, 41(Suppl 2): 192 ? 201. (in Chinese) doi: 10.14006/j.jzjgxb.2020.S2.0022
    [11] HSU H L, HALIM H. Improving seismic performance of framed structures with steel curved dampers [J]. Engineering Structures, 2017, 130: 99 ? 111. doi: 10.1016/j.engstruct.2016.09.063
    [12] 李萍, 王崢. 鉸接隅撐鋼框架抗震性能研究[J]. 世界地震工程, 2021, 37(3): 138 ? 147. doi: 10.3969/j.issn.1007-6069.2021.03.016

    LI Ping, WANG Zheng. Seismic performance of knee-braced steel frame with hinged joints [J]. World Earthquake Engineering, 2021, 37(3): 138 ? 147. (in Chinese) doi: 10.3969/j.issn.1007-6069.2021.03.016
    [13] WONGPAKDEE N, LEELATAVIWAT S, GOEL S C, et al. Performance-based design and collapse evaluation of buckling restrained knee braced truss moment frames [J]. Engineering Structures, 2014, 60: 23 ? 31. doi: 10.1016/j.engstruct.2013.12.014
    [14] JUNDA E, LEELATAVIWAT S, DOUNG P. Cyclic testing and performance evaluation of buckling-restrained knee-braced frames [J]. Journal of Constructional Steel Research, 2018, 148: 154 ? 164. doi: 10.1016/j.jcsr.2018.05.012
    [15] HONMA S, EBATO K, HARADA Y. Ductile steel knee brace with built-in comb-shaped seismic damper [J]. Journal of Constructional Steel Research, 2021, 184: 106765. doi: 10.1016/j.jcsr.2021.106765
    [16] JAVIDAN M M, KIM J. Seismic retrofit of soft-first-story structures using rotational friction dampers [J]. Journal of Structural Engineering, 2019, 145(12): 04019162. doi: 10.1061/(ASCE)ST.1943-541X.0002433
    [17] MCCORMICK J, ABURANO H, IKENAGA M, et al. Permissible residual deformation levels for building structures considering both safety and human elements [C]// Proceeding of 14th World Conference on Earthquake Engineering, Beijing, China. Paper, 2008 (5/6): 0071.
    [18] 邱燦星, 杜修力. 自復位結構的研究進展和應用現狀 [J]. 土木工程學報, 2021, 54(11): 11 ? 26.

    QIU Canxing, DU Xiuli. A state-of-the-art review on the research and application of self-centering structures [J]. China Civil Engineering Journal, 2021, 54(11): 11 ? 26. (in Chinese)
    [19] QIU C, ZHANG Y, LI H, et al. Seismic performance of concentrically braced frames with non-buckling braces: A comparative study [J]. Engineering Structures, 2018, 154: 93 ? 102. doi: 10.1016/j.engstruct.2017.10.075
    [20] QIU C, ZHU S. Shake table test and numerical study of self-centering steel frame with SMA braces [J]. Earthquake Engineering & Structural Dynamics, 2017, 46(1): 117 ? 137.
    [21] 方成, 王偉, 陳以一. 基于超彈性形狀記憶合金的鋼結構抗震研究進展[J]. 建筑結構學報, 2019, 40(7): 1 ? 12. doi: 10.14006/j.jzjgxb.2018.c168

    FANG Cheng, WANG Wei, CHEN Yiyi. State-of-the-art for application of superelastic shape memory alloy in seismic resistant steel structures [J]. Journal of Building Structures, 2019, 40(7): 1 ? 12. (in Chinese) doi: 10.14006/j.jzjgxb.2018.c168
    [22] ZHENG Y, DONG Y, LI Y. Resilience and life-cycle performance of smart bridges with shape memory alloy (SMA)-cable-based bearings [J]. Construction and Building Materials, 2018, 158: 389 ? 400. doi: 10.1016/j.conbuildmat.2017.10.031
    [23] 王景全, 李帥, 張凡. 采用SMA智能橡膠支座的近斷層大跨斜拉橋易損性分析[J]. 中國公路學報, 2017, 30(12): 30 ? 39. doi: 10.3969/j.issn.1001-7372.2017.12.004

    WANG Jingquan, LI Shuai, ZHANG Fan. Seismic fragility analyses of long-span cable-stayed bridge isolated by SMA wire-based smart rubber bearing in near-fault regions [J]. China Journal of Highway and Transport, 2017, 30(12): 30 ? 39. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.12.004
    [24] 邱燦星, 劉家旺, 杜修力. SMA滑動摩擦阻尼器的數值模擬及參數分析[J]. 工程力學, 2022, 39(8): 69 ? 79. doi: 10.6052/j.issn.1000-4750.2021.04.0305

    QIU Canxing, LIU Jiawang, DU Xiuli. Numerical simulation and parametric study of shape memory alloy slip friction dampers [J]. Engineering Mechanics, 2022, 39(8): 69 ? 79. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.04.0305
    [25] QIU C, FANG C, LIANG D, et al. Behavior and application of self-centering dampers equipped with buckling-restrained SMA bars [J]. Smart Materials and Structures, 2020, 29(3): 035009. doi: 10.1088/1361-665X/ab6883
    [26] 錢輝, 裴金召, 李宗翱, 等. 基于SMA/ECC 的新型自復位框架節點抗震性能試驗研究 [J]. 土木工程學報, 53(11): 64 ? 73, 80.

    QIAN Hui, PEI Jinzhao, LI Zongao, et al. Experimental study on seismic performance of self-centering beam-column joints reinforced with superelastic SMA and ECC [J]. China Civil Engineering Journal, 53(11): 64 ? 73, 80. (in Chinese)
    [27] WANG W, FANG C, LIU J. Large size superelastic SMA bars: Heat treatment strategy, mechanical property and seismic application [J]. Smart Materials and Structures, 2016, 25(7): 075001. doi: 10.1088/0964-1726/25/7/075001
    [28] QIU C, LIU J, DU X. Analytical and numerical study on the cyclic behavior of buckling-restrained SMA-based self-centering damper [J]. Smart Materials and Structures, 2021, 30(9): 095021. doi: 10.1088/1361-665X/ac177e
    [29] GB/T 192?2003, 普通螺紋基本牙型[S]. 北京: 中國標準出版社, 2004.

    GB/T 192?2003, General purpose metric screw threads-Basic profile [S]. Beijing: Standards Press of China, 2004. (in Chinese)
    [30] GB/T 193?2003, 普通螺紋直徑與螺距系列[S]. 北京: 中國標準出版社, 2004.

    GB/T 193?2003, General purpose metric screw threads—General plan [S]. Beijing: Standards Press of China, 2004. (in Chinese)
    [31] LIU Y, XIE Z, VAN HUMBEECK J, et al. Asymmetry of stress–strain curves under tension and compression for NiTi shape memory alloys [J]. Acta Materialia, 1998, 46(12): 4325 ? 4338. doi: 10.1016/S1359-6454(98)00112-8
    [32] MEDINA R, KRAWINKLER H. Pacific earthquake engineering research center [D]. Berkeley: University of California, 2004.
    [33] PAN C, ZHANG R, LUO H, et al. Target-based algorithm for baseline correction of inconsistent vibration signals [J]. Journal of Vibration and Control, 2018, 24(12): 2562 ? 2575. doi: 10.1177/1077546316689014
    [34] QIU C, ZHU S. High-mode effects on seismic performance of multi-story self-centering braced steel frames [J]. Journal of Constructional Steel Research, 2016, 119: 133 ? 143. doi: 10.1016/j.jcsr.2015.12.008
    [35] GB 50011?2010, 建筑抗震設計規范[S]. 北京: 中國建筑工業出版社, 2010.

    GB 50011?2010, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
    [36] ASGHARI A, SAHARKHIZAN S. Seismic design and performance evaluation of steel frames with knee-element connections [J]. Journal of Constructional Steel Research, 2019, 154: 161 ? 176. doi: 10.1016/j.jcsr.2018.11.011
    [37] Pacific Earthquake Engineering Research Center. OpenSEES: The open system for earthquake engineering simulation [DB/OL]. [2016-08-01]. http://opensees.berkeley.edu/.
    [38] QIU C, ZHU S. Performance-based seismic design of self-centering steel frames with SMA-based braces [J]. Engineering Structures, 2017, 130(1): 67 ? 82.
  • 加載中
圖(24) / 表(3)
計量
  • 文章訪問數:  397
  • HTML全文瀏覽量:  144
  • PDF下載量:  72
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-01-20
  • 修回日期:  2022-07-13
  • 網絡出版日期:  2022-08-19
  • 刊出日期:  2023-10-10

目錄

    /

    返回文章
    返回