留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

紊流積分尺度對CAARC模型迎風面極值風壓特性的影響及修正方法

張海程 杜樹碧 李明水 楊陽

張海程, 杜樹碧, 李明水, 楊陽. 紊流積分尺度對CAARC模型迎風面極值風壓特性的影響及修正方法[J]. 工程力學, 2023, 40(10): 11-20. doi: 10.6052/j.issn.1000-4750.2022.01.0092
引用本文: 張海程, 杜樹碧, 李明水, 楊陽. 紊流積分尺度對CAARC模型迎風面極值風壓特性的影響及修正方法[J]. 工程力學, 2023, 40(10): 11-20. doi: 10.6052/j.issn.1000-4750.2022.01.0092
ZHANG Hai-cheng, DU Shu-bi, LI Ming-shui, YANG Yang. THE EFFECT OF THE TURBULENCE INTEGRAL SCALE ON THE EXTREME WIND PRESSURES ON THE WINDWARD SURFACE OF THE CAARC MODEL AND THE CORRECTION METHOD[J]. Engineering Mechanics, 2023, 40(10): 11-20. doi: 10.6052/j.issn.1000-4750.2022.01.0092
Citation: ZHANG Hai-cheng, DU Shu-bi, LI Ming-shui, YANG Yang. THE EFFECT OF THE TURBULENCE INTEGRAL SCALE ON THE EXTREME WIND PRESSURES ON THE WINDWARD SURFACE OF THE CAARC MODEL AND THE CORRECTION METHOD[J]. Engineering Mechanics, 2023, 40(10): 11-20. doi: 10.6052/j.issn.1000-4750.2022.01.0092

紊流積分尺度對CAARC模型迎風面極值風壓特性的影響及修正方法

doi: 10.6052/j.issn.1000-4750.2022.01.0092
詳細信息
    作者簡介:

    張海程(1997?),男,山西臨汾人,博士生,主要從事結構風工程研究(E-mail: zhc18392637364@126.com)

    李明水(1966?),男,河南新鄉人,教授,博士,博導,主要從事橋梁與結構風工程研究(E-mail: lms_rcwe@swjtu.edu.cn)

    楊 陽(1987?),男,湖南長沙人,講師,博士,主要從事橋梁與結構風工程研究(E-mail: yang_yacad@163.com)

    通訊作者:

    杜樹碧(1986?),女,四川成都人,講師,博士,主要從事橋梁與結構風工程研究(E-mail: dus_rcwe@swjtu.edu.cn)

  • 中圖分類號: TU973+.213

THE EFFECT OF THE TURBULENCE INTEGRAL SCALE ON THE EXTREME WIND PRESSURES ON THE WINDWARD SURFACE OF THE CAARC MODEL AND THE CORRECTION METHOD

  • 摘要: 大氣邊界層流場中紊流度剖面可以正確模擬,但紊流積分尺度很難精確模擬,對于CAARC (commonwealth advisory aeronautical research council)標準高層建筑模型在大氣邊界層B類場地,實際紊流積分尺度為高層建筑采用常用縮尺比在常規風洞中的1.4倍~2.7倍。該文通過風洞試驗在大氣邊界層B類場地中采用5種不同縮尺比工況,其中一種工況接近于工程實際,通過其余四種工況與這種工況對比,定量地研究了紊流積分尺度對CAARC模型迎風面極值風壓特性的影響。結果表明,極值風壓系數隨紊流積分尺度的增大而增大,極值風壓系數誤差隨模擬紊流積分尺度誤差的增大而增大,當實際紊流積分尺度為模擬積分尺度的3.25倍時,實際極值風壓系數為模擬極值風壓系數的1.55倍,誤差率高達35%,且迎風面越靠近駐點的測點,受紊流積分尺度的這種影響越顯著;為了更深入理解紊流積分尺度的影響,利用脈動風壓功率譜分析了極值風壓受紊流積分尺度的影響機理;最后根據紊流積分尺度對極值風壓系數的影響,提出了迎風面極值風壓系數的修正公式。該試驗采用的紊流積分尺度涵蓋高層建筑常用縮尺比在常規風洞中紊流積分尺度模擬的所有誤差范圍,同時以CAARC標準高層建筑模型為試驗對象,可以為所有風洞試驗結果提供修正依據,同時可以推廣到其他鈍體。
  • 圖  1  模型尺寸與測壓孔編號 /m

    Figure  1.  Size of the model and the tap number

    圖  2  平均風速與紊流度剖面

    Figure  2.  Mean speed and turbulence intensity profile

    圖  3  脈動風速功率譜

    Figure  3.  Wind speed power spectra

    圖  4  平均風壓系數

    Figure  4.  Mean pressure coefficients

    圖  5  脈動風壓系數

    Figure  5.  RMS pressure coefficients

    圖  6  脈動風壓偏度與峰度

    Figure  6.  Skewness and kurtosis of fluctuating pressures

    圖  7  峰值因子

    Figure  7.  Peak factor

    圖  8  脈動風壓功率譜

    Figure  8.  Power spectrum of the fluctuating pressures

    圖  9  極值風壓系數

    Figure  9.  Extreme wind pressure coefficients

    圖  10  極值風壓系數修正公式

    Figure  10.  Correction formula of extreme wind pressure coefficient

    表  1  工況參數

    Table  1.   Parameters of cases

    工況$ L_{\rm u}^x $$ L_{\rm u}^x/D $阻塞比/(%)$ \dfrac{({L}_{\rm u}^{x}/D{)}^{\rm O}}{({L}_{\rm u}^{x}/D{)}^{\rm T}} $
    寬面窄面寬面
    XNJD320.8313.645.450.211.00
    XNJD150.2993.274.901.741.13
    XNJD311.3282.904.360.831.26
    XNJD130.3212.113.162.911.73
    XNJD120.2551.121.674.363.25
    注: $L_{\rm u}^x $為順風向紊流積分尺度;D為迎風面寬度;$({L}_{\rm u}^{x}/D)^{\rm O} $與${({L}_{\rm u}^{x}/D{)}^{\rm T}} $分別為目標工況和試驗工況的紊流積分尺度與迎風面寬度之比。
    下載: 導出CSV

    表  2  極值風壓系數誤差

    Table  2.   Error of extreme pressure coefficients

    工況$ \dfrac{{({L}_{\rm u}^{x}/D)}^{\rm O}}{({L}_{\rm u}^{x}/D{)}^{\rm T}} $寬面迎風D/B=1.50窄面迎風D/B=0.67
    $ C_{{\rm peak}}^{\rm O}/C_{{\rm peak}}^{\rm T} $$ C_{{\rm peak}}^{\rm O}/C_{{\rm peak}}^{\rm T} $
    1號2號3號6號7號8號
    XNJD123.251.511.501.491.571.561.57
    XNJD131.731.391.381.381.461.461.46
    XNJD311.261.261.261.271.281.281.27
    XNJD151.131.101.131.131.111.111.12
    下載: 導出CSV

    表  3  誤差對比

    Table  3.   Comparison of error

    工況$ ({L}_{\rm u}^{x}/D)^{\rm O}/({L}_{\rm u}^{x}/D)^{\rm T} $寬面迎風$ D/B = 1.50 $窄面迎風$ D/B = 0.67 $
    $ ({C}_{{\rm peak}}^{\rm O}/{C}_{{peak}}^{\rm T})_{\rm O} $$ ({C}_{{\rm peak}}^{\rm O}/{C}_{{\rm peak}}^{\rm T})_{\rm R} $$ ({C}_{{\rm peak}}^{\rm O}/{C}_{{\rm peak}}^{\rm T})_{\rm O} $$ ({C}_{{\rm peak}}^{\rm O}/{C}_{{\rm peak}}^{\rm T})_{\rm R} $
    1號2號3號1號2號3號6號7號8號6號7號8號
    XNJD123.251.511.501.490.991.011.011.571.561.570.990.991.00
    XNJD131.731.391.381.381.001.021.031.461.461.460.991.000.99
    XNJD311.261.261.261.271.001.001.001.281.281.271.001.001.00
    XNJD151.131.101.131.131.011.001.001.111.111.121.011.001.01
    下載: 導出CSV

    黑人大屌丝逼逼
  • [1] IRWIN H P A H. The design of spires for wind simulation [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1981, 7(3): 361 ? 366. doi: 10.1016/0167-6105(81)90058-1
    [2] AIJ 2004, RLB recommendations for loads on buildings [S]. Tokyo, Japan: Structural Standards Committee, Architectural Institute of Japan, 2004.
    [3] MANWELL J F, MCGOWAN J G, ROGERS A L. Wind energy explained: Theory, design and application [M]. Netherlands: John Wiley & Sons, 2010.
    [4] JTG/T 3360-01?2018, 公路橋梁抗風設計規范[S]. 北京: 人民交通出版社, 2018.

    JTG/T 3360-01?2018, Wind-resistant design specification for highway bridges [S]. Beijing: China Communications Press, 2018. (in Chinese)
    [5] MOONEGHI M A, IRWIN P, CHOWDHURY A G. Partial turbulence simulation method for predicting peak wind loads on small structures and building appurtenances [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 157: 47 ? 62.
    [6] LI Q S, MELBOURNE W H. An experimental investigation of the effects of free-stream turbulence on streamwise surface pressures in separated and reattaching flows [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54/55: 313 ? 323. doi: 10.1016/0167-6105(94)00050-N
    [7] LI Q S, MELBOURNE W H. The effect of large-scale turbulence on pressure fluctuations in separated and reattaching flows [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83(1/2/3): 159 ? 169.
    [8] LI Y G, YAN J H, CHEN X Z, et al. Investigation of surface pressures on CAARC tall building concerning effects of turbulence [J]. Wind and Structures, 2020, 31(4): 287 ? 298.
    [9] 祝志文, 鄧燕華. 湍流積分尺度對高層建筑風荷載影響的大渦模擬[J]. 西南交通大學學報, 2018, 53(3): 508 ? 516. doi: 10.3969/j.issn.0258-2724.2018.03.011

    ZHU Zhiwen, DENG Yanhua. Investigation into effects of turbulence integral length on wind loads acting on tall buildings using large eddy simulation [J]. Journal of Southwest Jiaotong University, 2018, 53(3): 508 ? 516. (in Chinese) doi: 10.3969/j.issn.0258-2724.2018.03.011
    [10] DAVENPORT A G. Note on the distribution of the largest value of a random function with application to gust loading [J]. Proceedings of the Institution of Civil Engineers, 1964, 28(2): 187 ? 196. doi: 10.1680/iicep.1964.10112
    [11] KWON D K, KAREEM A. Comparative study of major international wind codes and standards for wind effects on tall buildings [J]. Engineering Structures, 2013, 51: 23 ? 35. doi: 10.1016/j.engstruct.2013.01.008
    [12] 田玉基, 楊慶山, 范重. 《建筑結構荷載規范》圍護構件風荷載的修訂建議[J]. 建筑結構學報, 2017, 38(10): 108 ? 115.

    TIAN Yuji, YANG Qingshan, FAN Zhong. Proposed revisions on wind load provisions for cladding and components in 'Load code for the design of building structures' [J]. Journal of Building Structures, 2017, 38(10): 108 ? 115. (in Chinese)
    [13] 莊翔, 董欣, 鄭毅敏, 等. 矩形高層建筑非高斯風壓時程峰值因子計算方法[J]. 工程力學, 2017, 34(7): 177 ? 185, 223. doi: 10.6052/j.issn.1000-4750.2016.02.0134

    ZHUANG Xiang, DONG Xin, ZHENG Yimin, et al. Peak factor estimation methods of non-Gaussian wind pressures on a rectangular high-rise building [J]. Engineering Mechanics, 2017, 34(7): 177 ? 185, 223. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.02.0134
    [14] 高山, 鄭向遠, 黃一. 非高斯隨機過程的短期極值估計: 復合Hermite模型[J]. 工程力學, 2019, 36(1): 23 ? 31. doi: 10.6052/j.issn.1000-4750.2018.10.0855

    GAO Shan, ZHENG Xiangyuan, HUANG Yi. Hybrid hermite models for short term extrema estimation of non-Gaussian processes [J]. Engineering Mechanics, 2019, 36(1): 23 ? 31. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.10.0855
    [15] 潘小濤, 黃銘楓, 樓文娟. 復雜體型屋蓋表面風壓的高階統計量與非高斯峰值因子[J]. 工程力學, 2014, 31(10): 181 ? 187. doi: 10.6052/j.issn.1000-4750.2013.05.0398

    PAN Xiaotao, HUANG Mingfeng, LOU Wenjuan. High-order statistics and non-Gaussian peak factors of pressure processes on a complex long-span roof [J]. Engineering Mechanics, 2014, 31(10): 181 ? 187. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.05.0398
    [16] 林強, 劉敏, 楊慶山, 等. 非高斯風壓峰值因子估計: 基于矩的轉換過程法的對比研究[J]. 工程力學, 2020, 37(4): 78 ? 86. doi: 10.6052/j.issn.1000-4750.2019.04.0201

    LIN Qiang, LIU Min, YANG Qingshan, et al. A comparative study on moment-based translation process methods for the peak factor estimation of non-Gaussian wind pressures [J]. Engineering Mechanics, 2020, 37(4): 78 ? 86. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0201
    [17] GIOFFRE? M, GUSELLA V, GRIGORIU M. Non-Gaussian wind pressure on prismatic buildings. I: Stochastic field [J]. Journal of Structural Engineering, 2001, 127(9): 981 ? 989. doi: 10.1061/(ASCE)0733-9445(2001)127:9(981)
    [18] KUMAR K S, STATHOPOULOS T. Wind loads on low building roofs: A stochastic perspective [J]. Journal of Structural Engineering, 2000, 126(8): 944 ? 956. doi: 10.1061/(ASCE)0733-9445(2000)126:8(944)
    [19] 徐安. 超高層建筑結構風效應的現場實測與風洞試驗研究[D]. 廣州: 華南理工大學, 2016.

    XU An. Field measurement and wind tunnel experimental study on wind effects of super-tall buildings [D]. Guangzhou: South China University of Technology, 2016. (in Chinese)
    [20] Bergh H , Tijdeman H . Theoretical and experimental results for the dynamic response of pressure measuring systems [R]. Netherlands: National Aerospace Laboratory NLR, 1965.
    [21] IRWIN H P A H, COOPER K R, GIRARD R. Correction of distortion effects caused by tubing systems in measurements of fluctuating pressures [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1979, 5(1/2): 93 ? 107.
    [22] 謝壯寧, 顧明, 倪振華. 復雜測壓管路系統動態特性的通用分析程序[J]. 同濟大學學報, 2003, 31(6): 702 ? 708.

    XIE Zhuangning, GU Ming, NI Zhenhua. General arithmetic to analyze dynamic characteristics of complex tubing system for fluctuating wind pressure measurements [J]. Journal of Tongji University, 2003, 31(6): 702 ? 708. (in Chinese)
    [23] JGJ/T 338?2014, 建筑工程風洞試驗方法標準[S]. 北京: 中國建筑工業出版社, 2015.

    JGJ/T 338?2014, Standard for wind tunnel test of buildings and structures [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
    [24] LAROSE G L, MANN J. Gust loading on streamlined bridge decks [J]. Journal of Fluids and Structures, 1998, 12(5): 511 ? 536. doi: 10.1006/jfls.1998.0161
    [25] MELBOURNE W H. Comparison of measurements on the CAARC standard tall building model in simulated model wind flows [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1980, 6(1/2): 73 ? 88.
    [26] GB 50009?2012, 建筑結構荷載規范[S]. 北京: 中國建筑工業出版社, 2012.

    GB 50009?2012, Load code for the design of building structures [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
    [27] ASCE 7-10, Minimum design loads for buildings and other structures [S]. Reston, VA: American Society of Civil Engineers, 2010.
    [28] AS/NZS 1170.2: 2011, Structural design actions – Part 2: Wind actions [S]. New Zealand, Australia: Joint Technical Committee BD-006, 2011.
    [29] NBCC 2010, National building code of Canada [S]. Ottawa, Canada: Associate Committee on the National Building Code, National Research Council, 2010.
    [30] 張建勝, 武岳, 沈世釗. 結構風振極值分析中的峰值因子取值探討[J]. 鐵道科學與工程學報, 2007, 4(1): 28 ? 32. doi: 10.3969/j.issn.1672-7029.2007.01.006

    ZHANG Jiansheng, WU Yue, SHEN Shizhao. Discussion on the value of the peak factor in the analysis of wind-induced vibration [J]. Journal of Railway Science and Engineering, 2007, 4(1): 28 ? 32. (in Chinese) doi: 10.3969/j.issn.1672-7029.2007.01.006
    [31] HUNT J C R. A theory of turbulent flow round two-dimensional bluff bodies [J]. Journal of Fluid Mechanics, 1973, 61(4): 625 ? 706. doi: 10.1017/S0022112073000893
  • 加載中
圖(10) / 表(3)
計量
  • 文章訪問數:  235
  • HTML全文瀏覽量:  121
  • PDF下載量:  56
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-01-19
  • 修回日期:  2022-08-10
  • 網絡出版日期:  2022-11-15
  • 刊出日期:  2023-10-10

目錄

    /

    返回文章
    返回