留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

液化場地鋼筋混凝土橋墩殘余位移分析

董召先 孫治國 李宏男 王東升 司炳君

董召先, 孫治國, 李宏男, 王東升, 司炳君. 液化場地鋼筋混凝土橋墩殘余位移分析[J]. 工程力學, 2023, 40(10): 154-168. doi: 10.6052/j.issn.1000-4750.2022.01.0083
引用本文: 董召先, 孫治國, 李宏男, 王東升, 司炳君. 液化場地鋼筋混凝土橋墩殘余位移分析[J]. 工程力學, 2023, 40(10): 154-168. doi: 10.6052/j.issn.1000-4750.2022.01.0083
DONG Zhao-xian, SUN Zhi-guo, LI Hong-nan, WANG Dong-sheng, SI Bing-jun. ANALYSIS ON RESIDUAL DISPLACEMENT OF REINFORCED CONCRETE BRIDGE PIERS STANDING IN LIQUEFIABLE FIELD[J]. Engineering Mechanics, 2023, 40(10): 154-168. doi: 10.6052/j.issn.1000-4750.2022.01.0083
Citation: DONG Zhao-xian, SUN Zhi-guo, LI Hong-nan, WANG Dong-sheng, SI Bing-jun. ANALYSIS ON RESIDUAL DISPLACEMENT OF REINFORCED CONCRETE BRIDGE PIERS STANDING IN LIQUEFIABLE FIELD[J]. Engineering Mechanics, 2023, 40(10): 154-168. doi: 10.6052/j.issn.1000-4750.2022.01.0083

液化場地鋼筋混凝土橋墩殘余位移分析

doi: 10.6052/j.issn.1000-4750.2022.01.0083
基金項目: 河北省重點研發計劃項目(21375405D);國家自然科學基金項目(51978167);中央高?;究蒲袠I務費項目(ZY20215111)
詳細信息
    作者簡介:

    董召先(1998?),男,山東人,碩士生,主要從事橋梁抗震研究(E-mail: dongzhanxian2020@mail.dlut.edu.cn)

    李宏男(1957?),男,遼寧人,教授,博士,長江學者特聘教授,主要從事結構工程防災減災及健康監測研究(E-mail: hnli@dlut.edu.cn)

    王東升(1974?),男,內蒙古人,教授,博士,博導,主要從事橋梁抗震研究(E-mail: dswang@hebut.edu.cn)

    司炳君(1971?),男,黑龍江人,教授,博士,主要從事橋梁與結構工程抗震研究(E-mail: sibingjun@sina.com)

    通訊作者:

    孫治國(1980?),男,山東人,教授,博士,主要從事橋梁抗震研究(E-mail: sunzhiguo@cidp.edu.cn)

  • 中圖分類號: U443.2

ANALYSIS ON RESIDUAL DISPLACEMENT OF REINFORCED CONCRETE BRIDGE PIERS STANDING IN LIQUEFIABLE FIELD

  • 摘要: 為探究場地液化對鋼筋混凝土(Reinforced Concrete, RC)橋墩殘余位移影響機理,首先基于OpenSees有限元計算平臺闡述了液化場地-結構有限元數值建模方法,通過與離心機試驗結果對比驗證了建模方法的可靠性。其次以一座實際工程中的單樁單柱式橋墩為原型,發展了液化場地-RC橋墩建模方法,建立非液化場地-樁-RC橋墩數值模型(模型1)和液化場地-樁-RC橋墩數值模型(模型2),對兩模型輸入近斷層地震動進行非線性動力時程分析。討論了模型2場地液化情況,并對模型1與模型2的場地位移、樁身位移、樁身最大屈服曲率延性系數、墩頂殘余位移及墩頂殘余位移隨地震動峰值加速度(PGA)變化情況進行對比。結果表明:地震過程中,模型2場地各深度出現不同程度液化現象;且土體中上部均達完全液化狀態,土體水平極限抗力損失最大,對樁身側向約束嚴重降低。液化導致場地震后殘余位移顯著增加,場地對樁身震后約束增強,導致樁頂殘余位移增大。另外,由于地震過程中中上部液化土體對樁身側向約束嚴重降低導致樁身塑性變形顯著增大、樁身最大塑性變形位置明顯下移以及樁身塑性變形區擴展,引起樁身更為嚴重的塑性損傷,進而增大樁頂殘余位移。液化場地震后殘余位移增大與地震過程中對樁身約束降低共同導致樁頂殘余位移增加,經橋墩放大傳遞至墩頂,引起墩頂殘余位移增大。液化場地墩頂殘余位移隨PGA增大速度明顯大于非液化場地橋墩,主要原因可能是隨PGA增加,場地液化程度加深。
  • 圖  1  CSP3離心機試驗總體布置圖

    Figure  1.  General layout of CSP3 centrifuge test

    圖  2  單樁試件原型尺寸及測點布置 /m

    Figure  2.  Prototype size of single pile specimen and measuring point arrangement

    圖  3  SantCruze地震動時程

    Figure  3.  Time history of the SantCruze ground motion

    圖  4  關鍵深度處超孔隙水壓比

    Figure  4.  Excess pore water pressure ratio at crucial depths

    圖  5  關鍵深度處樁身彎矩

    Figure  5.  Pile bending moment at crucial depth

    圖  6  墩頂殘余位移

    Figure  6.  Residual displacement at pier top

    圖  7  橋墩總體設計 /m

    Figure  7.  General design details of the practical pier

    圖  8  樁柱式橋墩數值模型 /m

    Figure  8.  Numerical model of extended pile-shaft

    圖  9  3條近斷層地震動加速度時程

    Figure  9.  Acceleration time history of 3 near-fault ground motions

    圖  10  3條近斷層地震動放大系數譜

    Figure  10.  Amplification factor spectrum of 3 near-fault ground motions

    圖  11  模型2場地峰值超孔隙水壓比分布

    Figure  11.  Peak excess pore water pressure ratio distributions along field of Model 2

    圖  12  模型1、模型2場地峰值位移分布

    Figure  12.  Peak displacement distributions along field of Model 1 and Model 2

    圖  13  模型1、模型2場地殘余位移分布

    Figure  13.  Residual displacement distributions along field of Model 1 and Model 2

    圖  14  模型1、模型2樁身峰值位移分布

    Figure  14.  Pile peak displacement distributions of Model 1 and Model 2

    圖  15  模型1、模型2樁身殘余位移分布

    Figure  15.  Pile residual displacement distributions of Model 1 and Model 2

    圖  16  模型1和模型2樁身最大曲率延性系數分布

    Figure  16.  Pile maximum curvature ductility distributions of Model 1 and Model 2

    圖  17  模型1和模型2墩頂位移時程

    Figure  17.  Displacement time history at top pier of Model 1 and Model 2

    圖  18  墩頂殘余位移隨PGA變化

    Figure  18.  Variation of residual displacement at pier top with PGA

    表  1  CSP3試驗砂土參數

    Table  1.   Parameters of sand in CSP3 test

    類別 厚度/m 重度/(kN·m?3) 相對密度/(%) 內摩擦角/(?)
    松砂 9.3 19.5 55 33
    密砂 11.4 20.3 80 37
    下載: 導出CSV

    表  2  試驗模型中PDMY材料參數

    Table  2.   Parameters of PDMY material in testing model

    參數 松砂 密砂
    飽和密度/(t·m?3) 1.985 2.05
    參考剪切模量/MPa 80 116
    參考體積模量/MPa 214 310
    內摩擦角/(?) 33 37
    峰值剪應變 0.1 0.1
    基準圍壓/kPa 80 80
    壓力相關系數 0.5 0.5
    相位轉換角/(?) 27 27
    剪縮系數 0.03 0.02
    體積收縮系數1 0.4 0.6
    體積收縮系數2 2.0 3
    體積膨脹系數1/kPa 10 10
    體積膨脹系數2 0.01 0.003
    體積膨脹系數3 1 1
    下載: 導出CSV

    表  3  飽和中砂材料參數

    Table  3.   Parameters of PDMY saturated middle sand material

    參數 參數取值
    飽和密度/(t/m3) 1.985
    參考剪切模量/MPa 80
    參考體積模量/MPa 214
    內摩擦角/(?) 33
    峰值剪應變 0.1
    基準圍壓/kPa 80
    壓力相關系數 0.5
    相位轉換角/(?) 27
    剪縮系數 0.03
    體積收縮系數1 0.4
    體積收縮系數2 2
    體積膨脹系數1/kPa 10
    體積膨脹系數2 0.01
    體積膨脹系數3 1
    下載: 導出CSV

    表  4  3條地震動詳細信息

    Table  4.   Detailed information of 3 ground motions

    命名 近斷層距/km 峰值加速度PGA/g
    TCU065-EW 2.49 0.79
    TCU067-EW 1.11 0.50
    TCU068-EW 3.01 0.51
    下載: 導出CSV

    表  5  模型1、模型2樁頂殘余位移與墩頂殘余位移對比

    Table  5.   Comparison between residual displacement of pile top with pier top of Model 1 and Model 2


    模型
    類別
    殘余位移/mm
    TCU065-EW TCU067-EW TCU068-EW
    樁頂 墩頂 樁頂 墩頂 樁頂 墩頂
    1 ?1.3 ?2.3 ?6.5 ?7.7 22 32
    2 ?18.2 ?28.7 ?17.2 ?31.1 102 131
    下載: 導出CSV

    表  6  模型1、模型2墩頂殘余位移角對比

    Table  6.   Comparison of residual drift ratios of Model 1 and Model 2

    模型
    類別
    墩頂殘余位移角/(%)
    TCU065-EW TCU067-EW TCU068-EW
    1 0.04 0.13 0.53
    2 0.48 0.52 2.18
    增大倍數 11 3 3
    下載: 導出CSV

    黑人大屌丝逼逼
  • [1] 孫治國, 王東升, 司炳君, 等. 采用預應力筋進行RC橋墩地震損傷控制的試驗研究[J]. 土木工程學報, 2014, 47(1): 107 ? 116.

    SUN Zhiguo, WANG Dongsheng, SI Bingjun, et al. Experimental research on the seismic damage control techniques for RC bridge piers by using prestressing tendons [J]. China Civil Engineering Journal, 2014, 47(1): 107 ? 116. (in Chinese)
    [2] 司炳君, 谷明洋, 孫治國. 近斷層地震動下搖擺-自復位橋墩地震反應分析[J]. 工程力學, 2017, 34(10): 1 ? 11. doi: 10.6052/j.issn.1000-4750.2016.05.0376

    SI Bingjun, GU Mingyang, SUN Zhiguo. Seismic response analysis of the rocking self-centering bridge piers under the near-fault ground motions [J]. Engineering Mechanics, 2017, 34(10): 1 ? 11. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.05.0376
    [3] 曾武華, 卓衛東, 王東升. RC橋墩殘余位移指標影響因素分析及貝葉斯估計[J]. 振動與沖擊, 2021, 40(19): 145 ? 150. doi: 10.13465/j.cnki.jvs.2021.19.018

    ZENG Wuhua, ZHUO Weidong, WANG Dongsheng. Influence factors analysis and Bayesian estimation for residual displacement index of RC pier [J]. Journal of Vibration and Shock, 2021, 40(19): 145 ? 150. (in Chinese) doi: 10.13465/j.cnki.jvs.2021.19.018
    [4] JI D, WEN W, ZHAI C, et al. Residual displacement ratios of SDOF systems subjected to ground motions recorded on soft soils [J]. Soil Dynamics and Earthquake Engineering, 2018, 115: 331 ? 335. doi: 10.1016/j.soildyn.2018.09.001
    [5] FUJINO Y, HASHIMOTO S, ABE M. Damage analysis of Hanshin expressway viaducts during 1995 Kobe earthquake. I: Residual inclination of reinforced concrete piers [J]. Journal of Bridge Engineering, ASCE, 2005, 10(1): 45 ? 53. doi: 10.1061/(ASCE)1084-0702(2005)10:1(45)
    [6] MACRAE G A, KAWASHIMA K. Post-earthquake residual displacement of bilinear oscillators [J]. Earthquake Engineering and Structural Dynamics, 1997, 26(7): 701 ? 716. doi: 10.1002/(SICI)1096-9845(199707)26:7<701::AID-EQE671>3.0.CO;2-I
    [7] RUIZ-GARCíA J, MIRANDA E. Residual displacement ratios for assessment of existing structures [J]. Earthquake Engineering and Structural Dynamics, 2006, 35(3): 315 ? 336. doi: 10.1002/eqe.523
    [8] SAIIDI M S, ARDAKANI S N S. An analytical study of residual displacements in RC bridge columns subjected to near-fault earthquakes [J]. Bridge Structures, 2012, 8(1): 35 ? 45. doi: 10.3233/BRS-2012-0036
    [9] CHOI H, SAIIDI M S, SOMERVILLE P, et al. Experimental study of reinforced concrete bridge columns subjected to near-fault ground motions [J]. ACI Structural Journal, 2010, 107(1): 3 ? 12.
    [10] PHAN V, SAIIDI M S, ANDERSON J, et al. Near-fault ground motion effects on reinforced concrete bridge columns [J]. Journal of Structural Engineering, ASCE, 2007, 133(7): 982 ? 989. doi: 10.1061/(ASCE)0733-9445(2007)133:7(982)
    [11] ZATAR W A, MUTSUYOSHI H. Residual displacements of concrete bridge piers subjected to near field earthquakes [J]. ACI Structural Journal, 2002, 99(6): 740 ? 749.
    [12] ARDAKANI S M S, SAIIDI M S. Simple method to estimate residual displacement in concrete bridge columns under near-fault earthquake motions [J]. Engineering Structures, 2018, 176: 208 ? 219. doi: 10.1016/j.engstruct.2018.08.083
    [13] 艾慶華, 王東升, 李宏男, 等. 基于塑性鉸模型的鋼筋混凝土橋墩地震損傷評價[J]. 工程力學, 2009, 26(4): 158 ? 166.

    AI Qinghua, WANG Dongsheng, LI Hongnan, et al. Seismic damage evaluation of RC bridge columns based on plastic hinge model [J]. Engineering Mechanics, 2009, 26(4): 158 ? 166. (in Chinese)
    [14] 陳樂生. 汶川地震公路震害調查: 橋梁 [M]. 北京: 人民交通出版社, 2012.

    CHEN Lesheng. Report on highways’ damage in the Wenchuan earthquake: Bridge [M]. Beijing: China Communications Press, 2012. (in Chinese)
    [15] GANEV T, YAMAZAKI F, ISHIZAKI H, et al. Response analysis of the Higashi–Kobe Bridge and surrounding soil in the 1995 Hyogoken–Nanbu Earthquake [J]. Earthquake Engineering and Structural Dynamics, 1998, 27(6): 557 ? 576. doi: 10.1002/(SICI)1096-9845(199806)27:6<557::AID-EQE742>3.0.CO;2-Z
    [16] 孫治國, 劉亞明, 司炳君. 基于OpenSees的樁-土-橋墩相互作用非線性數值分析模型[J]. 世界地震工程, 2018, 34(4): 67 ? 74.

    SUN Zhiguo, LIU Yaming, SI Bingjun, et al. Nonlinear analysis model for pile-soil-pier interaction based on OpenSees platform [J]. World Earthquake Engineering, 2018, 34(4): 67 ? 74. (in Chinese)
    [17] YOSHIDA N, TAZOH T, WAKAMATSU K, et al. Causes of Showa bridge collapse in the 1964 Niigata earthquake based on eyewitness testimony [J]. Soil and Foundation, 2011, 47(6): 1075 ? 1087.
    [18] CUBRINOVSKI M, RHODES A, NTRITSOS N, et al. System response of liquefiable deposits [J]. Soil Dynamics and Earthquake Engineering, 2019, 124: 212 ? 229. doi: 10.1016/j.soildyn.2018.05.013
    [19] CUBRINOVSKI M, ROBINSON K. Lateral spreading: Evidence and interpretation from the 2010–2011 Christchurch earthquakes [J]. Soil Dynamics and Earthquake Engineering, 2016, 91: 187 ? 201. doi: 10.1016/j.soildyn.2016.09.045
    [20] ROBINSON K, CUBRINOVSKI M, BRADLEY B A. Lateral spreading displacements from the 2010 Darfield and 2011 Christchurch earthquakes [J]. International Journal of Geotechnical Engineering, 2014, 8(4): 441 ? 448. doi: 10.1179/1939787913Y.0000000032
    [21] KUTTER B L, GAJAN S, MANDA K K, et al. Effects of layer thickness and density on settlement and lateral spreading [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(6): 603 ? 614. doi: 10.1061/(ASCE)1090-0241(2004)130:6(603)
    [22] BOULANGER R W, KAMAI R, ZIOTOPOULOU K. Liquefaction induced strength loss and deformation: Simulation and design [J]. Bulletin of Earthquake Engineering, 2014, 12(3): 1107 ? 1128. doi: 10.1007/s10518-013-9549-x
    [23] 張鑫磊, 衣睿博, 紀展鵬, 等. 循環荷載作用下飽和砂土的性質演化規律及液化階段性特征[J]. 工程力學, 2023, 40(2): 157 ? 167. doi: 10.6052/j.issn.1000-4750.2021.08.0648

    ZHANG Xinlei, YI Ruibo, JI Zhanpeng, et al. Property evelution and liquefaction stage characteristics of saturated sand under cyclic loading [J]. Engineering Mechanics, 2023, 40(2): 157 ? 167. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.08.0648
    [24] IDRISS I M, BOULANGER R W. Semi-empirical procedures for evaluating liquefaction potential during earthquakes [J]. Soil Dynamics and Earthquake Engineering, 2006, 26(2-4): 115 ? 130. doi: 10.1016/j.soildyn.2004.11.023
    [25] BOULANGER R W, CURRAS C J, KUTTER B L, et al. Seismic Soil-Pile-Structure interaction experiments and analyses [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(9): 750 ? 759. doi: 10.1061/(ASCE)1090-0241(1999)125:9(750)
    [26] BRANDENBERG S J, ZHAO M, BOULANGER R W, et al. P-y plasticity model for nonlinear dynamic analysis of piles in liquefiable soil [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(8): 1262 ? 1274. doi: 10.1061/(ASCE)GT.1943-5606.0000847
    [27] BRANDENBERG S J, BOULANGER R W, KUTTER B L, et al. Behavior of pile foundations in laterally spreading ground during centrifuge tests [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1378 ? 1391.
    [28] 陳志雄, 李康銀, 王成龍, 等. 液化側向擴展場地剛性排水管樁群樁振動臺試驗研究[J]. 工程力學, 2022, 39(9): 141 ? 152. doi: 10.6052/j.issn.1000-4750.2021.05.0374

    CHEN Zhixiong, LI Kangyin, WANG Chenglong. Table Tests on rigid-drainage pipe pile groups at liquefied laterly spreading site [J]. Engineering Mechanics, 2022, 39(9): 141 ? 152. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0374
    [29] 鄒佑學, 王睿, 張建民. 碎石樁加固可液化場地數值模擬與分析[J]. 工程力學, 2019, 36(10): 152 ? 163. doi: 10.6052/j.issn.1000-4750.2018.10.0559

    ZOU Youxue, WANG Rui, ZHANG Jianmin. Numerical investigation on liquefaction mitigation of liquefiable soil improved by stone columns [J]. Engineering Machanics, 2019, 36(10): 152 ? 163. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.10.0559
    [30] BRADLEY B A, CUBRINOVSKI M, HASKELL J. Probabilistic pseudo-static analysis of pile foundations in liquefiable soils [J]. Soil Dynamics and Earthquake Engineering, 2011, 31(10): 1414 ? 1425. doi: 10.1016/j.soildyn.2011.05.018
    [31] KHOSRAVIFAR A, BOULANGER R W, KUNNATH S K. Effects of liquefaction on inelastic demands on extended pile shafts [J]. Earthquake Spectra, 2014, 30(4): 1749 ? 1773. doi: 10.1193/032412EQS105M
    [32] WANG X, LUO F, SU Z, et al. Efficient finite-element model for seismic response estimation of piles and soils in liquefied and laterally spreading ground considering shear localization [J]. International Journal of Geomechanics, 2017, 17(6): 1 ? 11.
    [33] 王曉偉, 葉愛君, 李闖. 可液化河谷場地不同形式梁式橋的地震反應[J]. 同濟大學學報:自然科學版, 2018, 46(6): 1 ? 9.

    WANG Xiaowei, YE Aijun, LI Chuang. Seismic response of girder bridges in liquefiable river valleys with different structural configurations [J]. Journal of Tongji University (Natural Science), 2018, 46(6): 1 ? 9. (in Chinese)
    [34] 王曉偉, 李闖, 葉愛君, 等. 可液化河谷場地簡支梁橋的地震反應分析[J]. 中國公路學報, 2016, 29(4): 85 ? 95. doi: 10.3969/j.issn.1001-7372.2016.04.011

    WANG Xiaowei, LI Chuang, YE Aijun, et al. Seismic demand analysis of a simply supported girder bridge in liquefied or non-liquefied ground [J]. China Journal of Highway and Transport, 2016, 29(4): 85 ? 95. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.04.011
    [35] WANG X, YE A, JI B. Fragility-based sensitivity analysis on the seismic performance of pile-group-supported bridges in liquefiable ground undergoing scour potentials [J]. Engineering Structures, 2019, 198(1): 1 ? 15.
    [36] 王曉偉, 葉愛君, 羅富元. 液化場地樁柱式基礎橋梁結構地震反應的敏感性分析[J]. 工程力學, 2016, 33(8): 132 ? 140. doi: 10.6052/j.issn.1000-4750.2015.01.0022

    WANG Xiaowei, YE Aijun, LUO Fuyuan. Seismic response sensitivity analysis of pile supported bridge structure in liquefiable ground [J]. Engineering Mechanics, 2016, 33(8): 132 ? 140. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.01.0022
    [37] WILSON D W, BOULANGER R W, KUTTER B L. Soil-pile-superstructure interaction at soft or liquefiable soil sites-Centrifuge data report for CSP3 [R]. Davis: University of California at Davis, 1997.
    [38] API RP 2A-WSD, Recommended practice for planning, designing, and constructing fixed offshore platform-working stress design [S]. Washington, D.C.: American Petroleum Institute, 2014.
    [39] BRANDENBERG S J. Behavior of pile foundations in liquefied and laterally spreading ground [D]. Davis, CA: University of California, Davis, 2005.
    [40] 王震. 自復位預制拼裝UHPC空心墩抗震性能及設計方法研究[D]. 南京: 東南大學, 2018.

    WANG Zhen. Research on seismic performance and design method of self-centering precast segmental UHPC hollow bridge piers [D]. Nanjing: Southeast University, 2018. (in Chinese)
  • 加載中
圖(18) / 表(6)
計量
  • 文章訪問數:  285
  • HTML全文瀏覽量:  96
  • PDF下載量:  65
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-01-15
  • 修回日期:  2022-06-11
  • 刊出日期:  2023-10-10

目錄

    /

    返回文章
    返回