留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

不同強度鋼筋受壓屈曲性能及材料本構模型

楊紅 蘇星宇 趙銀

楊紅, 蘇星宇, 趙銀. 不同強度鋼筋受壓屈曲性能及材料本構模型[J]. 工程力學, 2023, 40(10): 112-128. doi: 10.6052/j.issn.1000-4750.2022.01.0076
引用本文: 楊紅, 蘇星宇, 趙銀. 不同強度鋼筋受壓屈曲性能及材料本構模型[J]. 工程力學, 2023, 40(10): 112-128. doi: 10.6052/j.issn.1000-4750.2022.01.0076
YANG Hong, SU Xing-yu, ZHAO Yin. BUCKLING BEHAVIOR AND MATERIAL CONSTITUTIVE MODEL OF COMPRESSIVE STEEL BAR WITH DIFFERENT STRENGTH[J]. Engineering Mechanics, 2023, 40(10): 112-128. doi: 10.6052/j.issn.1000-4750.2022.01.0076
Citation: YANG Hong, SU Xing-yu, ZHAO Yin. BUCKLING BEHAVIOR AND MATERIAL CONSTITUTIVE MODEL OF COMPRESSIVE STEEL BAR WITH DIFFERENT STRENGTH[J]. Engineering Mechanics, 2023, 40(10): 112-128. doi: 10.6052/j.issn.1000-4750.2022.01.0076

不同強度鋼筋受壓屈曲性能及材料本構模型

doi: 10.6052/j.issn.1000-4750.2022.01.0076
基金項目: 國家自然科學基金項目(51878100)
詳細信息
    作者簡介:

    蘇星宇(1999?),男,重慶人,碩士生,主要從事鋼筋混凝土結構受力性能研究(E-mail: 1307442271@qq.com)

    趙 銀(1996?),男,四川人,碩士,主要從事鋼筋混凝土結構受力性能研究(E-mail: 2936671494@qq.com)

    通訊作者:

    楊 紅(1969?),男,浙江人,教授,博士,博導,主要從事鋼筋混凝土基本性能及結構抗震研究(E-mail: yangh@cqu.edu.cn)

  • 中圖分類號: TU375.3

BUCKLING BEHAVIOR AND MATERIAL CONSTITUTIVE MODEL OF COMPRESSIVE STEEL BAR WITH DIFFERENT STRENGTH

  • 摘要: 長徑比和屈服強度是影響受壓鋼筋屈曲性能的主要參數,已有研究成果重點分析長徑比的影響,關于屈服強度對鋼筋屈曲后強度退化規律的系統性研究成果很少。該文完成了長徑比分別為4.000、5.000、6.000、6.250、8.000、9.000、9.375、10.000、12.000和15.000的HRB400鋼筋、HRB500鋼筋試件的單調受壓屈曲試驗,測量了各屈曲鋼筋試件的平均應力-平均應變$ ({\overline \sigma _{\text{s}}} {\text{-}} {\overline \varepsilon _{\text{s}}}) $曲線和跨中橫向屈曲位移。結合作者已完成的HRB600鋼筋的相應試驗結果,分析了屈服強度、長徑比和屈曲方向對屈曲鋼筋受壓強度退化的影響,對比了D-M模型計算的${\overline \sigma _{\text{s}}} {\text{-}} {\overline \varepsilon _{\text{s}}}$曲線與不同強度、長徑比鋼筋試件的屈曲受力性能差異。通過分析各類誤差產生的原因,提出了可合理考慮長徑比、屈服強度對屈曲效應影響的修正D-M模型。研究結果表明:由于不同強度鋼筋的${\varepsilon _{\text{u}}}$、${\varepsilon _{{\text{sh}}}}$、${f_{\text{y}}}$、${f_{\text{u}}}$等力學性能參數不同,鋼筋試件屈曲受力性能存在差異;較小長徑比的鋼筋受壓屈曲后平均應力能繼續提高,較大長徑比的鋼筋受壓屈曲后無法達到屈服強度;不同長徑比或屈服強度的鋼筋試件屈曲方向存在差異;D-M模型的計算結果與三種強度鋼筋的屈曲受力性能試驗結果相比有明顯誤差;修正D-M模型可直接用于不同屈服強度鋼筋,且能合理考慮長徑比和屈服強度對屈曲鋼筋${\overline \sigma _{\text{s}}} {\text{-}} {\overline \varepsilon _{\text{s}}}$曲線的影響。
  • 圖  1  鋼筋單調受拉應力-應變曲線

    Figure  1.  Stress-strain curve of steel bar under monotonic tension

    圖  2  試件Y4-16-240-DY的屈曲變形

    Figure  2.  Buckling deformations of specimen Y4-16-240-DY

    圖  3  試件Y5-16-144-DY的屈曲變形

    Figure  3.  Buckling deformations of specimen Y5-16-144-DY

    圖  4  試件的跨中橫向屈曲位移曲線

    Figure  4.  Mid-span transverse buckling displacements of specimens

    圖  5  試件的平均應力-平均應變曲線

    Figure  5.  Average stress-average strain curves of specimens

    圖  6  HRB600鋼筋試件的平均應力-平均應變曲線[26]

    Figure  6.  Average stress-average strain curves of HRB600 reinforcement specimens[26]

    圖  7  不同強度鋼筋試件單調受壓屈曲平均應力-平均應變曲線對比

    Figure  7.  Average stress-average strain curves of buckled reinforcement specimen under monotonic compression with different strength

    圖  8  屈服強度和長徑比對鋼筋受壓屈曲性能的影響

    Figure  8.  Effect of yield strength and slenderness ratio on compressive buckling behavior of reinforcement

    圖  9  D-M模型單調受壓平均應力-平均應變曲線[19]

    Figure  9.  Monotonic compression average stress-average strain curve of D-M model[19]

    圖  10  D-M模型與試驗結果對比

    Figure  10.  Comparison between D-M model and test results

    圖  11  修正D-M模型第二段曲線的擬合效果

    Figure  11.  Fitting effect of the second segment curve of modified D-M model

    圖  12  修正D-M模型第三段斜直線的擬合效果

    Figure  12.  Fitting effect of the third segment declining line of modified D-M model

    圖  13  修正D-M模型平均應力-平均應變曲線與試驗結果對比

    Figure  13.  Comparison between average stress-average strain curves of modified D-M model and test results

    表  1  HRB400鋼筋和HRB500鋼筋的單拉試驗結果

    Table  1.   Results of HRB400 and HRB500 steel bar under monotonic tension

    試件
    編號
    彈性模量
    ${E_{\text{s}}}/{\text{MPa}}$
    屈服強度
    ${f_{\text{y}}}/{\text{MPa}}$
    抗拉強度
    ${f_{\text{u}}}/{\text{MPa}}$
    ${\varepsilon _{{\text{sh}}}}$/
    (%)
    ${\varepsilon _{{\text{ult}}}}$/
    (%)
    ${\varepsilon _{{\text{su}}}}$/
    (%)
    Y4-1189 661.6462.952664.8581.2617.3424.55
    Y4-2185 205.0464.326667.0011.1219.0525.77
    Y4-3187 999.0461.594662.2671.1217.9724.51
    平均值187 621.9462.957664.7091.1718.1224.94
    Y5-1174 766.4542.088703.7081.3614.3619.62
    Y5-2177 815.9541.004698.7881.4114.3619.03
    Y5-3177 815.9543.173705.1151.2214.4619.55
    平均值176 799.4542.088702.5371.3314.3919.40
    注:表中${\varepsilon _{{\text{sh}}}}$為應力開始強化處的應變;${\varepsilon _{{\text{ult}}}}$為與抗拉強度${f_{\text{u}}}$對應的應變;${\varepsilon _{{\text{su}}}}$為鋼筋斷裂時的極限拉應變。
    下載: 導出CSV

    黑人大屌丝逼逼
  • [1] MASSONE L M. Fundamental principles of the reinforced concrete design code changes in Chile following the MW 8.8 earthquake in 2010 [J]. Engineering Structures, 2013, 56: 1335 ? 1345. doi: 10.1016/j.engstruct.2013.07.013
    [2] YANG H, SUN P X, DENG Y J. Experiment investigation of the influence of reinforcing bar buckling on seismic behavior of RC columns [J]. Engineering Structures, 2020, 220: 110923. doi: 10.1016/j.engstruct.2020.110923
    [3] MOYER M J, KOWALSKY M J. Influence of tension strain on buckling of reinforcement in concrete columns [J]. ACI Structural Journal, 2003, 100(1): 75 ? 85.
    [4] 楊紅, 張洛, 張和平. 考慮縱筋屈曲及疲勞損傷的鋼筋混凝土柱抗震性能試驗與非線性分析[J]. 建筑結構學報, 2013, 34(11): 130 ? 140.

    YANG Hong, ZHANG Luo, ZHANG Heping. Experiments and nonlinear analysis on seismic behavior of RC columns considering buckling and fatigue damage of reinforcing steel bar [J]. Journal of Building Structures, 2013, 34(11): 130 ? 140. (in Chinese)
    [5] PANTAZOPOULOU S J. Detailing for reinforcement stability in RC members [J]. Journal of Structural Engineering, ASCE, 1998, 124(6): 623 ? 632. doi: 10.1061/(ASCE)0733-9445(1998)124:6(623)
    [6] SPACONE E, FILIPPOU F C, TAUCER F F. Fiber beam column model for nonlinear analysis of R/C frames: Part 1. Formulation [J]. Earthquake Engineering and Structural Dynamics, 1996, 25(7): 711 ? 725. doi: 10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9
    [7] 張皓, 李宏男, 曹光偉, 等. 考慮應變率效應的鋼筋混凝土動態纖維梁單元模型[J]. 建筑結構學報, 2019, 40(10): 103 ? 112.

    ZHANG Hao, LI Hongnan, CAO Guangwei, et al. Fiber beam element model for reinforced concrete structures considering strain rate effects [J]. Journal of Building Structures, 2019, 40(10): 103 ? 112. (in Chinese)
    [8] MENEGOTTO M, PINTO P. Method of analysis for cyclically loaded R C plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending [C]// Proceedings of IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads. Zurich, Switzerlang: International Association for Bridge and Structural Engineering, 1973: 15 ? 22.
    [9] 陳慶軍, 余梅霞, 李冰州, 等. 基于ABAQUS 的VLEM 模型及其在RC 剪力墻抗震分析中的研究[J]. 工程力學, 2021, 38(8): 192 ? 203. doi: 10.6052/j.issn.1000-4750.2020.10.0779

    CHEN Qingjun, YU Meixia, LI Bingzhou, et al. MVLEM model development based on ABAQUS and its application in aseismic analysis of RC shear wall [J]. Engineering Mechanics, 2021, 38(8): 192 ? 203. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0779
    [10] CHANG G A, MANDER J B. Seismic energy-based fatigue damage analysis of bridge columns: part I - evaluation of seismic capacity, technical report [R]. Buffalo: National Center for Earthquake Engineering Research, 1994: nceer-94-0006.
    [11] 李磊, 羅光喜, 王卓涵, 等. 震損鋼筋混凝土柱剩余能力的數值模型[J]. 工程力學, 2020, 37(12): 52 ? 67. doi: 10.6052/j.issn.1000-4750.2019.12.0789

    LI Lei, LUO Guangxi, WANG Zhuohan, et al. Numerical model for the residual seismic capacity of seismically damaged reinforced concrete columns [J]. Engineering Mechanics, 2020, 37(12): 52 ? 67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0789
    [12] URMSON C R, MANDER J B. Local buckling analysis of longitudinal reinforcing bars [J]. Journal of Structural Engineering, ASCE, 2012, 138(1): 62 ? 71. doi: 10.1061/(ASCE)ST.1943-541X.0000414
    [13] MONTI G, NUTI C. Nonlinear cyclic behavior of reinforcing bars including buckling [J]. Journal of Structural Engineering, ASCE, 1992, 118(12): 3268 ? 3284. doi: 10.1061/(ASCE)0733-9445(1992)118:12(3268)
    [14] BAE S, MIESES A M, BAYRAK O. Inelastic buckling of reinforcing bars [J]. Journal of Structural Engineering, ASCE, 2005, 131(2): 314 ? 321. doi: 10.1061/(ASCE)0733-9445(2005)131:2(314)
    [15] RODRIGUEZ M E, BOTERO J C, VILLA J. Cyclic stress-strain behavior of reinforcing steel including effect of buckling [J]. Journal of Structural Engineering, ASCE, 1999, 125(6): 605 ? 612. doi: 10.1061/(ASCE)0733-9445(1999)125:6(605)
    [16] MAU S. Effect of tie spacing on inelastic buckling of reinforcing bars [J]. ACI Structural Journal, 1990, 87(6): 671 ? 677.
    [17] GOMES A, APPLETON J. Nonlinear cyclic stress-strain relationship of reinforcing bars including buckling [J]. Engineering Structures, 1997, 19(10): 822 ? 826. doi: 10.1016/S0141-0296(97)00166-1
    [18] ZONG Z Y, KUNNATH S K, MONTI G. Simulation of reinforcing bars buckling in circular reinforced concrete columns [J]. ACI Structural Journal, 2013, 110(4): 607 ? 616.
    [19] DHAKAL R P, MAEKAWA K. Modeling of postyield buckled of reinforcement [J]. Journal of Structural Engineering, ASCE, 2002, 128(9): 1139 ? 1147. doi: 10.1061/(ASCE)0733-9445(2002)128:9(1139)
    [20] KIM S H, KOUTROMANOS I. Constitutive model for reinforcing steel under cyclic loading [J]. Journal of Structural Engineering, ASCE, 2016, 142(12): 04016133-1 ? 04016133-14. doi: 10.1061/(ASCE)ST.1943-541X.0001593
    [21] KUNNATH S K, HEO Y A, MOHLE J F. Nonlinear uniaxial material model for reinforcing steel bars [J]. Journal of Structural Engineering, ASCE, 2009, 135(4): 335 ? 343. doi: 10.1061/(ASCE)0733-9445(2009)135:4(335)
    [22] MASSONE L M, MORODER D. Buckling modeling of reinforcing bars with imperfections [J]. Engineering Structures, 2009, 31(3): 758 ? 767. doi: 10.1016/j.engstruct.2008.11.019
    [23] 楊紅, 耿南鋒, 劉子珅. 考慮柱縱向鋼筋屈曲特征的修正材料本構模型[J]. 工程力學, 2020, 37(6): 174 ? 185. doi: 10.6052/j.issn.1000-4750.2019.08.0465

    YANG Hong, GENG Nanfeng, LIU Zishen. A modified constitutive model considering the buckling behavior of longitudinal reinforcement in RC columns [J]. Engineering Mechanics, 2020, 37(6): 174 ? 185. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0465
    [24] MAZZONI S, MCKENNA F, SCOTT M H, et al. Open system for earthquake engineering simulation users command-language manual [M/OL]. Berkeley: University of California, 2021-05-24. http://opensees.berkeley.edu/wiki/index.php/Command_Manual.
    [25] AKKAYA Y, GUNER S, VECCHIO F J. Constitutive model for inelastic buckling behavior of reinforcing bars [J]. ACI Structural Journal, 2019, 116(3): 195 ? 204.
    [26] 楊紅, 蔣惠, 冉小峰. HRB600 鋼筋屈曲受力性能試驗研究[J]. 工程力學, 2022, 39(6): 83 ? 98. doi: 10.6052/j.issn.1000-4750.2021.03.0198

    YANG Hong, JIANG Hui, RAN Xiaofeng. Experimental research on buckling behavior of HRB600 steel bar [J]. Engineering Mechanics, 2022, 39(6): 83 ? 98. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0198
    [27] GB/T 1499.2?2018, 鋼筋混凝土用鋼第2部分: 熱軋帶肋鋼筋[S]. 北京: 中國標準出版社, 2018.

    GB/T 1499.2?2018, Steel for the reinforcement of concrete-Part 2: Hot rolled ribbed bars [S]. Beijing: Standards Press of China, 2018. (in Chinese)
    [28] 劉子珅, 楊紅, 張吉慶. 基于橫向撓度的鋼筋屈曲狀態判斷方法研究[J]. 工程力學, 2018, 35(2): 144 ? 152. doi: 10.6052/j.issn.1000-4750.2016.10.0770

    LIU Zishen, YANG Hong, ZHANG Jiqing. Research on buckling state determination of reinforcing bars based on lateral deflection [J]. Engineering Mechanics, 2018, 35(2): 144 ? 152. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.10.0770
    [29] MANDER J B. Seismic design of bridge piers [D]. Christchurch, New Zealand: University of Canterbury, 1983.
    [30] SPURR D D, PAULAY T. Post-elastic behaviour of reinforced concrete frame-wall components and assemblages subjected to simulated seismic loading [R]. Christchurch, New Zealand: University of Canterbury, 1984.
    [31] DODD L L, RESTREPO-POSADA J I. Model for predicting cyclic behavior of reinforcing steel [J]. Journal of Structural Engineering, ASCE, 1995, 121(3): 433 ? 445. doi: 10.1061/(ASCE)0733-9445(1995)121:3(433)
  • 加載中
圖(13) / 表(1)
計量
  • 文章訪問數:  259
  • HTML全文瀏覽量:  72
  • PDF下載量:  60
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-01-17
  • 修回日期:  2022-06-09
  • 錄用日期:  2022-06-24
  • 網絡出版日期:  2022-06-24
  • 刊出日期:  2023-10-10

目錄

    /

    返回文章
    返回