留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

局部高溫誘導致裂非均質花崗巖機理研究

劉偉吉 向暢 譚賓 祝效華 胡海 李枝林

劉偉吉, 向暢, 譚賓, 祝效華, 胡海, 李枝林. 局部高溫誘導致裂非均質花崗巖機理研究[J]. 工程力學, 2023, 40(10): 222-236. doi: 10.6052/j.issn.1000-4750.2022.01.0062
引用本文: 劉偉吉, 向暢, 譚賓, 祝效華, 胡海, 李枝林. 局部高溫誘導致裂非均質花崗巖機理研究[J]. 工程力學, 2023, 40(10): 222-236. doi: 10.6052/j.issn.1000-4750.2022.01.0062
LIU Wei-ji, XIANG Chang, TAN Bin, ZHU Xiao-hua, HU Hai, LI Zhi-lin. THE MECHANISM OF LOCAL HIGH-TEMPERATURE INDUCED CRACKING OF HETEROGENEOUS GRANITES[J]. Engineering Mechanics, 2023, 40(10): 222-236. doi: 10.6052/j.issn.1000-4750.2022.01.0062
Citation: LIU Wei-ji, XIANG Chang, TAN Bin, ZHU Xiao-hua, HU Hai, LI Zhi-lin. THE MECHANISM OF LOCAL HIGH-TEMPERATURE INDUCED CRACKING OF HETEROGENEOUS GRANITES[J]. Engineering Mechanics, 2023, 40(10): 222-236. doi: 10.6052/j.issn.1000-4750.2022.01.0062

局部高溫誘導致裂非均質花崗巖機理研究

doi: 10.6052/j.issn.1000-4750.2022.01.0062
基金項目: 國家自然科學基金項目(52004229,52034006);中國石油-西南石油大學創新聯合體科技合作項目(2020CX040301)
詳細信息
    作者簡介:

    劉偉吉(1989?),男,四川簡陽人,副研究員,博士,碩導,主要從事鉆井提速與巖石破碎的研究(E-mail: lwj2017_swpu@163.com)

    向 暢(1997?),男,四川廣元人,碩士生,主要從事鉆井提速與巖石破碎的研究(E-mail: 1271200418@qq.com)

    譚 賓(1969?),男,四川成都人,高工,本科,主要從事鉆井工程的研究(E-mail: 1954960973@qq.com)

    胡 海 (1997?),男,四川德陽人,碩士生,主要從事鉆井提速與巖石破碎的研究(E-mail: 940790848@qq.com)

    李枝林(1984?),男,四川廣元人,高工,博士,主要從事鉆井工程的研究(E-mail: 2350399069@qq.com)

    通訊作者:

    祝效華(1978?),男,山東菏澤人,教授,博士,博導,主要從事油氣井管柱力學與井下工具的研究(E-mail: zxhth113@163.com)

  • 中圖分類號: TE249

THE MECHANISM OF LOCAL HIGH-TEMPERATURE INDUCED CRACKING OF HETEROGENEOUS GRANITES

  • 摘要: 深部難鉆地層鉆速慢、鉆井成本高的問題是現階段鉆井提速遇到的瓶頸問題,傳統機械破巖難以大幅提速,亟需新的高效破巖方法。該文通過室內試驗分析了局部高溫作用下花崗巖的破碎模式,基于顆粒流離散元PFC2D建立了非均質花崗巖的等效巖體模型及局部高溫誘導致裂花崗巖的熱-力耦合模型,考慮了地層壓力、液柱壓力對于局部高溫誘導花崗巖致裂的影響,再現了非均質花崗巖的微、宏觀破裂過程,總結了溫度、壓力與巖石微觀損傷的關系。實驗結果表明:合理調節溫度,在不產生熔融花崗巖的前提下,高溫破碎花崗巖效果極為顯著,破碎的巖屑呈片狀,利于攜巖。局部高溫作用下花崗巖主要產生兩個類型裂紋:晶內剪切裂紋和晶間拉伸裂紋;液柱壓力對高溫誘導裂紋的抑制作用特別明顯,側向壓力能促進晶內剪切裂紋擴展;局部高溫使花崗巖產生明顯損傷的情況僅發生在淺地層,對深部地層作用甚微,建議結合PDC鉆頭切削或沖擊;對花崗巖不同位置進行加熱時,晶內剪切裂紋只存在于加熱中心位置,而晶間拉伸裂紋擴展的范圍更廣,裂紋密度和分布與晶粒屬性有關。研究結果有助于對高溫熱致裂巖石機理的深入了解以及為深部鉆井提速提供新的思路。
  • 圖  1  局部熱致裂花崗巖實驗裝置示意圖

    Figure  1.  Schematic diagram of local thermal cracking granite experimental device

    圖  2  乙炔氧氣局部高溫加熱花崗巖

    Figure  2.  Granite heated by local high temperature acetylene oxygen flame

    圖  3  不同時刻花崗巖受熱狀態

    Figure  3.  Granite heating state at different time

    圖  4  花崗巖熱致裂過程示意圖 /mm

    Figure  4.  Schematic diagram of granite thermal cracking process

    圖  5  花崗巖等效巖體建模過程

    Figure  5.  Granite equivalent rock mass modeling process

    圖  6  溫度加載過程示意圖

    Figure  6.  Schematic diagram of the temperature loading process

    圖  7  花崗巖參數標定

    Figure  7.  Calibration of granite parameters

    圖  8  溫度、側向壓力、液柱壓力加載示意圖

    Figure  8.  Schematic diagram of temperature, lateral pressure and liquid column pressure loading

    圖  9  花崗巖受熱時裂紋分布

    Figure  9.  Distribution of cracks in heating granite

    圖  10  不同液柱壓力和側向壓力時接觸力大小及分布情況

    Figure  10.  Contact force magnitude and distribution under different liquid column pressure and lateral pressure

    圖  11  600 ℃不同側向壓力時液柱壓力加載與裂紋數量變化

    Figure  11.  When the temperature is 600 ℃ and the lateral pressure is different, the pressure loading of liquid column changes with the number of cracks

    圖  12  600℃不同液柱壓力時側向壓力加載與裂紋數量變化

    Figure  12.  When the temperature is 600℃ and the liquid column pressure is different, the lateral pressure loading and the number of cracks change

    圖  13  不同地層裂紋隨溫度變化

    Figure  13.  Variation of cracks in different strata with temperature

    圖  14  不同位置加熱花崗巖裂紋分布情況

    Figure  14.  Distribution of cracks in heated granite at different locations

    圖  15  600℃裂紋數量隨位置變化

    Figure  15.  Number of cracks changing with position at 600℃

    表  1  PFC模型顆粒微觀參數

    Table  1.   Particle microscopic parameters of PFC model

    顆粒模型 微觀屬性 石英 鈉長石 斜長石 云母
    基礎顆粒屬性 最小顆粒半徑/mm 0.045 0.045 0.045 0.045
    粒徑比 1.66 1.66 1.66 1.66
    顆粒密度/(kg/m3) 2700 2700 2700 2700
    法向-剪切接觸剛度比 1.0 2.0 2.0 1.5
    接觸模量/GPa 49 29 39 19
    摩擦系數 0.7 0.7 0.7 0.7
    平行黏結模型 半徑增倍器 1.0 1.0 1.0 1.0
    法向與剪切剛度比 1.0 2.0 2.0 1.5
    平行黏結模量/GPa 49 29 39 19
    抗拉強度/MPa 140 131 131 124
    內聚力/MPa 50 47 47 44
    摩擦角/(°) 65 65 65 65
    顆粒熱屬性 比熱容/(J/kg·℃) 800 630 700 760
    熱膨脹系數/(1/℃) 16.7×10?6 3.7×10?6 4.2×10?6 12.1×10?6
    熱阻/(℃/W) 3
    傳導率/(W/(m·K)) 2.647
    加熱時間/s 0.35
    初始溫度/(℃) 20
    光滑節理模型 法向接觸剛度/(N/M) 8.2×1013
    剪切接觸剛度/(N/M) 2×1013
    抗拉強度/(MPa) 6.79
    內聚力/(MPa) 45
    摩擦角/(°) 65
    摩擦系數 0.7
    下載: 導出CSV

    表  2  實驗與模型標定對比

    Table  2.   Comparison between experiment and model calibration

    參數實驗值標定值誤差/(%)
    抗壓強度/MPa86.481.55.67
    抗拉強度/MPa4.854.923.92
    彈性模量/GPa10.711.487.29
    泊松比0.0760.0816.58
    下載: 導出CSV

    表  3  三種地層側向壓力和液柱壓力取值

    Table  3.   Three stratum lateral pressure and liquid column pressure values

    深度/m側向壓力/MPa液柱壓力/MPa
    100013.7413.230
    350073.4046.305
    5100112.1467.473
    下載: 導出CSV

    黑人大屌丝逼逼
  • [1] ROSTAMSOWLAT I, EVANS B, KWON H J. A review of the frictional contact in rock cutting with a PDC bit [J]. Journal of Petroleum Science and Engineering, 2022, 208: 109665. doi: 10.1016/j.petrol.2021.109665
    [2] GUO Z, DENG R. Research on tooth wear of non-spherical single-cone bit in hard rock formation of deep well [J]. Engineering Failure Analysis, 2021, 125: 105408. doi: 10.1016/j.engfailanal.2021.105408
    [3] 劉偉吉, 王燕飛, 郭天陽, 等. 單齒切削破碎非均質花崗巖微宏觀機理研究[J]. 工程力學, 2022, 39(6): 122 ? 133. doi: 10.6052/j.issn.1000-4750.2021.03.0213

    LIU Weiji, WANG Yanfei, GUO Tianyang, et al. Investigation on the rock cutting mechanism of heterogeneous granite using a grain-based modeling approach [J]. Engineering Mechanics, 2022, 39(6): 122 ? 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0213
    [4] 劉偉吉, 陽飛龍, 董洪鐸, 等. 異形PDC齒混合切削破碎花崗巖特性研究[J]. 工程力學, 2023, 40(3): 245 ? 256. doi: 10.6052/j.issn.1000-4750.2021.10.0761

    LIU Weiji, YANG Feilong, DONG Hongduo, et al. Investigate on the mixed-cutting of specially-shaped pdc cutters in granite [J]. Engineering Mechanics, 2023, 40(3): 245 ? 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.10.0761
    [5] 李瑋, 何選蓬, 閆鐵, 等. 近鉆頭扭轉沖擊器破巖機理及應用[J]. 石油鉆采工藝, 2014, 36(5): 1 ? 4. doi: 10.13639/j.odpt.2014.05.001

    LI Wei, HE Xuanpeng, YAN Tie, et al. Rock fragmentation mechanism and application of near-bit torsion impacter [J]. Oil Drilling & Production Technology, 2014, 36(5): 1 ? 4. (in Chinese) doi: 10.13639/j.odpt.2014.05.001
    [6] 盧玲玲, 何東升, 張偉東, 等. 扭轉沖擊器研究及應用[J]. 石油礦場機械, 2015, 44(6): 82 ? 85.

    LU Lingling, HE Dongsheng, ZHANG Weidong, et al. Research and Application Prospect of Torsional Impact Hammer [J]. Oil Field Equipment, 2015, 44(6): 82 ? 85. (in Chinese)
    [7] 劉書斌, 倪紅堅, 張恒, 等. 多維沖擊器鉆井提速技術及應用[J]. 石油機械, 2020, 48(10): 44 ? 50.

    LIU Shubin, NI Hongjian, ZHANG Heng, et al. Multi-dimensional impactor and its application [J]. China Petroleum Machinery, 2020, 48(10): 44 ? 50. (in Chinese)
    [8] WANG W, LIU G, LI J, et al. Numerical simulation study on rock-breaking process and mechanism of compound impact drilling [J]. Energy Reports, 2021, 7: 3137 ? 3148. doi: 10.1016/j.egyr.2021.05.040
    [9] 菅志軍, 張文華, 劉國輝, 等. 石油鉆井用液動沖擊器研究現狀及發展趨勢[J]. 石油機械, 2001, 29(11): 43 ? 46. doi: 10.3969/j.issn.1001-4578.2001.11.017

    JIAN Zhijun, ZHANG Wenhua, LIU Guohui, et al. Current status and developing trend of research on hydraulic hole hammer for oil drilling [J]. China Petroleum Machinery, 2001, 29(11): 43 ? 46. (in Chinese) doi: 10.3969/j.issn.1001-4578.2001.11.017
    [10] 王四一, 李泉新, 劉建林, 等. 沖擊螺桿馬達研制[J]. 煤田地質與勘探, 2019, 47(5): 225 ? 231. doi: 10.3969/j.issn.1001-1986.2019.05.032

    WANG Siyi, LI Quanxin, LIU Jianlin, et al. Development of impact screw motor [J]. Coal Geology & Exploration, 2019, 47(5): 225 ? 231. (in Chinese) doi: 10.3969/j.issn.1001-1986.2019.05.032
    [11] 劉偉吉, 陽飛龍, 祝效華, 等. 異形PDC齒切削破巖提速機理研究[J]. 中國機械工程, 2021: 1 ? 11. http://kns.cnki.net/kcms/detail/42.1294.TH.20211103.1843.014.html

    LIU Wejii, YANG Feilong, ZHU Xiaohua, et al. Research on the Mechanism of Rock Breaking and Speed Increase in Cutting with Abnormal PDC Cutter[J]. CHINA MECHANICAL ENGINEERING, 2021: 1 ? 11. http://kns.cnki.net/kcms/detail/42.1294.TH.20211103.1843.014.html
    [12] 吳澤兵, 呂瀾濤, 王勇勇, 等. 牙輪—PDC混合鉆頭的破巖特性及溫度場變化[J]. 天然氣工業, 2020, 40(3): 99 ? 106.

    WU Zebing, LYU Lantao, WANG Yongyong, et al. Rock-breaking characteristics and temperature field change of cone-PDO hybrid bits [J]. Natural Gas Industry, 2020, 40(3): 99 ? 106. (in Chinese)
    [13] RAUENZAHN R M, TESTER J W. Rock failure mechanisms of flame-jet thermal spallation drilling—theory and experimental testing [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1989, 26(5): 381 ? 399.
    [14] ZHU X, LUO Y, LIU W. On the rock-breaking mechanism of plasma channel drilling technology [J]. Journal of Petroleum Science and Engineering, 2020, 194: 107356. doi: 10.1016/j.petrol.2020.107356
    [15] Ferri, Hassani, Pejman, et al. The influence of microwave irradiation on rocks for microwave-assisted underground excavation[J]. 巖石力學與巖土工程學報: 英文版, 2016(1): 15. doi: 10.1016/j.jrmge.2015.10.004

    HASSANI F, PEJMAN M, GHARIB N. The influence of microwave irradiation on rocks for microwave-assisted underground excavation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(1): 1 ? 15. doi: 10.1016/j.jrmge.2015.10.004
    [16] RUI F, ZHAO G F. Experimental and numerical investigation of laser-induced rock damage and the implications for laser-assisted rock cutting [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 139(7): 104653.
    [17] LYU Z, SONG X, LI G. An analytical method to determine rock spallation temperature and degree of heterogeneity in thermal spallation drilling for geothermal energy [J]. Geothermics, 2019, 77: 99 ? 105.
    [18] WILLIAMS R E, POTTER R M, MISKA S. Experiments in thermal spallation of various rocks [J]. Journal of Energy Resources Technology, 1996, 118(1): 2 ? 6. doi: 10.1115/1.2792690
    [19] PRESTON F W, WHITE H E. Observations on spalling [J]. Journal of the American Ceramic Society, 1934, 17: 137 ? 144. doi: 10.1111/j.1151-2916.1934.tb19296.x
    [20] PANEL M L. The future of geothermal energy. Impact of enhanced geothermal systems [EGS] on the United States in the 21st century [J]. Geothermics, 2006, 17(5/6): 881 ? 882.
    [21] WAN Z J, ZHAO Y S, YUAN Z, et al. Research status quo and prospection of mechanical characteristics of rock under high temperature and high pressure [J]. Procedia Earth and Planetary Science, 2009, 1(1): 565 ? 570. doi: 10.1016/j.proeps.2009.09.090
    [22] GARITTE B, GENS A, VAUNAT J. Thermal conductivity of argillaceous rocks: determination methodology using in situ heating tests [J]. Rock Mechanics & Rock Engineering, 2014, 47(1): 111 ? 129.
    [23] GUO T, TANG S, LIU S, et al. Numerical simulation of hydraulic fracturing of hot dry rock under thermal stress [J]. Engineering Fracture Mechanics, 2020, 240: 107350. doi: 10.1016/j.engfracmech.2020.107350
    [24] DAI X, HUANG Z, WU X, et al. Failure analysis of high-temperature granite under the joint action of cutting and liquid nitrogen jet impingement [J]. Rock Mechanics and Rock Engineering, 2021, 54: 6249 ? 6264. doi: 10.1007/s00603-021-02600-1
    [25] 姚池, 何忱, 蔣水華, 等. 脆性各向異性巖石破壞過程數值模擬[J]. 工程力學, 2019, 36(2): 96 ? 103. doi: 10.6052/j.issn.1000-4750.2017.12.0915

    YAO Chi, HE Chen, JIANG Shuihua, et al. Numerical simulation of damage and failure process in anisotropic brittle rocks [J]. Engineering Mechanics, 2019, 36(2): 96 ? 103. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0915
    [26] 張志鎮, 高峰, 高亞楠, 等. 高溫影響下花崗巖孔徑分布的分形結構及模型[J]. 巖石力學與工程學報, 2016, 35(12): 2426 ? 2438. doi: 10.13722/j.cnki.jrme.2016.0798

    ZHANG Zhizhen, GAO Feng, GAO Yanan, et al. Fractal structure and model of pore size distribution of granite under high temperatures [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2426 ? 2438. (in Chinese) doi: 10.13722/j.cnki.jrme.2016.0798
    [27] 夏晨, 戚承志, 利學, 等. 裂紋面動摩擦作用對脆性材料動力破壞的影響[J]. 工程力學, 2022, 39(12): 50 ? 59. doi: 10.6052/j.issn.1000-4750.2021.07.0552

    XIA Chen, QI Chengzhi, LI Xue, et al. Effect of dynamic friction on crack surface on dynamic failure of brittle materials [J]. Engineering Mechanics, 2022, 39(12): 50 ? 59. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.07.0552
    [28] 韓智銘, 劉慶寬, 王雪, 等. 巖體多裂紋擴展演化過程數值流形方法研究[J]. 工程力學, 2021, 38(增刊): 7 ? 13. doi: 10.6052/j.issn.1000-4750.2020.05.S003

    HAN Zhiming, LIU Qingkuan, WANG Xue, et al. Study on numerical manifold method for evolution process of multi-crack propagation in rock mass [J]. Engineering Mechanics, 2021, 38(Suppl): 7 ? 13. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.S003
    [29] WANG C, CHEN L, LIU J, et al. Experimental characterization of thermo-mechanical coupling properties of Beishan granite [J]. European Journal of Environmental and Civil Engineering, 2015, 19(Suppl1): 29 ? 42. doi: 10.1080/19648189.2015.1064618
    [30] MENG Q, ZHANG M, HAN L, et al. Experimental research on the influence of loading rate on the mechanical properties of limestone in a high-temperature state [J]. Bulletin of Engineering Geology & the Environment, 2019, 78(5): 3479 ? 3492.
    [31] 翟宇星, 李亞博, 張恩華, 等. 高溫花崗巖物理力學特性研究綜述[J]. 山西建筑, 2020, 46(21): 39 ? 42. doi: 10.3969/j.issn.1009-6825.2020.21.015

    ZHAI Yuxing, LI Yabo, ZHANG Enhua, et al. A review of physical and mechanical properties of high-temperature granite [J]. Shanxi Architecture, 2020, 46(21): 39 ? 42. (in Chinese) doi: 10.3969/j.issn.1009-6825.2020.21.015
    [32] 張帆. 三峽花崗巖力學特性與本構關系研究[D]. 武漢: 中國科學院研究生院(武漢巖土力學研究所), 2007.

    ZHANG Fan. Study on mechanical behavior and constitutive relations of the three gorges granite [D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2007. (in Chinese)
    [33] 田崢, 秦世利, 游堯, 等. 古潛山巨厚花崗巖地層綜合提速與配套工藝技術研究[J]. 中國石油和化工標準與質量, 2021, 41(16): 156 ? 158. doi: 10.3969/j.issn.1673-4076.2021.16.077

    TIAN Zheng, QIN Shili, YOU Yao, et al. Study on comprehensive acceleration and supporting technology of huge thickness granite strata in buried hill [J]. China Petroleum and Chemical Standard and Quality, 2021, 41(16): 156 ? 158. (in Chinese) doi: 10.3969/j.issn.1673-4076.2021.16.077
    [34] 鄧運華, 彭文緒. 渤海錦州25-1S混合花崗巖潛山大油氣田的發現[J]. 中國海上油氣, 2009, 21(3): 145 ? 150. doi: 10.3969/j.issn.1673-1506.2009.03.001

    DENG Yunhua, PENG Wenxu. Discovering large buried-hill oil and gas fields of migmatitic granite on Jinzhou 25-1S in Bohai sea [J]. China Offshore Oil and Gas, 2009, 21(3): 145 ? 150. (in Chinese) doi: 10.3969/j.issn.1673-1506.2009.03.001
    [35] 田勇. 福州花崗巖區大直徑地熱深井主要鉆井技術[J]. 福建地質, 2011, 30(2): 177 ? 182. doi: 10.3969/j.issn.1001-3970.2011.02.012

    TIAN Yong. The main drilling technology of the big diameter geothermal deep well in granite area, Fuzhou city [J]. Geology of Fujian, 2011, 30(2): 177 ? 182. (in Chinese) doi: 10.3969/j.issn.1001-3970.2011.02.012
    [36] 王志剛, 胡志興, 李寬, 等. 干熱巖鉆完井的挑戰及技術展望[J]. 科技導報, 2019, 37(19): 58 ? 65.

    WANG Zhigang, HU Zhixing, LI Kuan, et al. Challenges and technical prospects of dry-hot rock drilling and completion [J]. Science & Technology Review, 2019, 37(19): 58 ? 65. (in Chinese)
    [37] 王曉峰, 吳飚, 劉晶波, 等. 花崗巖高壓狀態方程實驗研究[J]. 工程力學, 2020, 37(增刊): 237 ? 241. doi: 10.6052/j.issn.1000-4750.2019.04.S044

    WANG Xiaofeng, WU Biao, LIU Jingbo, et al. Experimental research on the equation of state of granite at high pressure [J]. Engineering Mechanics, 2020, 37(Suppl): 237 ? 241. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S044
    [38] LI C, HU Y, MENG T, et al. Mode-I fracture toughness and mechanisms of Salt-Rock gypsum interlayers under real-time high-temperature conditions [J]. Engineering Fracture Mechanics, 2020, 240: 107357. doi: 10.1016/j.engfracmech.2020.107357
    [39] LIU S, XU J Y. Fractal analysis for dynamic failure characteristics of granite induced by mechanical-thermal loading [J]. Géotechnique Letters, 2015, 5(3): 191 ? 197.
    [40] LIU S, XU J. Analysis on damage mechanical characteristics of marble exposed to high temperature [J]. International Journal of Damage Mechanics, 2015, 24(8): 1180 ? 1193. doi: 10.1177/1056789515570507
    [41] LIANG Z Y, CHEN Z Q, NI X Y. Experimental analysis on acoustic emission of the fracture marble under high temperature [J]. Advanced Materials Research, 2011, 197/198: 1430 ? 1434. doi: 10.4028/www.scientific.net/AMR.197-198.1430
    [42] 陳浩, 李邦潤, 蔡燦, 等. 深井高溫巖石破巖機理及生熱分析[J]. 石油機械, 2021, 49(1): 1 ? 10. doi: 10.16082/j.cnki.issn.1001-4578.2021.01.001

    CHEN Hao, LI Bangrun, CAI Can, et al. Rock breaking mechanisms and heat generation analysis on high temperature rocks in deep wells [J]. China Petroleum Machinery, 2021, 49(1): 1 ? 10. (in Chinese) doi: 10.16082/j.cnki.issn.1001-4578.2021.01.001
    [43] CHEN G Q, WANG J C, JIN T B, et al. Influence of temperature on crack initiation and propagation in granite [J]. International Journal of Geomechanics, 2018, 18(8): 04018094-1 ? 04018094-15.
    [44] CHEN Y L , NI J , SHAO W , et al. Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 56: 62 ? 66. doi: 10.1016/j.ijrmms.2012.07.026
    [45] RAMANA Y V, SARMA L P. Thermal expansion of a few Indian granitic rocks [J]. Physics of the earth and planetary interiors, 1980, 22(1): 36 ? 41. doi: 10.1016/0031-9201(80)90098-9
    [46] CHEN S, YANG C, WANG G. Evolution of thermal damage and permeability of Beishan granite [J]. Applied thermal engineering, 2017, 110: 1533 ? 1542. doi: 10.1016/j.applthermaleng.2016.09.075
    [47] CALAMAN J J, ROLSETH H C. Jet Piercing [C]. New York: Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 1968.
    [48] TESTER J W, HERZOG H J, CHEN Z, et al. Prospects for universal heat mining: from a Jules Verne vision to a 21st century reality [C]. Stanford, CA: Nineteenth Workshop On Geothermal Reservoir Engineering, 1994, 5: 99 ? 121.
    [49] NIECKELE A O, DE SILVA L F F, PLáCIDO J C R. Numerical analysis of the turbulent flow field applied to thermal spallation drilling [C]. Charlotte, North Carolina, USA: ASME 2004 Heat Transfer/Fluids Engineering Summer Conference, 2004.
    [50] BROWNING J, HORTON W, HARTMAN H. Recent advances in flame jet working of minerals [C]. Proceedings of the 7th Symposium on Rock Mechanics. Philadelphia, USA, Pennsylvania State University, 1965.
    [51] YU P Y, PAN P Z, FENG G L, et al. Physico-mechanical properties of granite after cyclic thermal shock [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(4): 693 ? 706. doi: 10.1016/j.jrmge.2020.03.001
    [52] SONG X Z, LV Z H, LI G S, et al. Numerical analysis on the impact of the flow field of hydrothermal jet drilling for geothermal wells in a confined cooling environment [J]. Geothermics, 2017, 66: 39 ? 49. doi: 10.1016/j.geothermics.2016.10.007
    [53] ROSSI E, JAMALI S, SAAR M O, et al. Field test of a combined thermo-mechanical drilling technology. Mode I: Thermal spallation drilling [J]. Journal of Petroleum Science and Engineering, 2020, 190: 107005. doi: 10.1016/j.petrol.2020.107005
    [54] SAKSALA T. Numerical study on the effect of confinement on thermal spallation drilling of hard rock [C]. Brasov, Romania: International Conference CIBv2019 Civil Engineering and Building Services, 2020.
    [55] 徐小荷, 余靜. 巖石破碎學[M]. 北京: 煤炭工業出版社, 1984.

    XU Xiaohe, YU Jing. Rock fragmentation [M]. Beijing: China Coal Industry Publishing House, 1984. (in Chinese)
    [56] DEISMAN N, MAS IVARS D, DARCEL C, et al. Empirical and numerical approaches for geo-mechanical characterization of coal seam reservoirs [J]. International Journal of Coal Geology, 2010, 82(3/4): 204 ? 212. doi: 10.1016/j.coal.2009.11.003
    [57] POTYONDY D O. A grain-based model for rock: Approaching the true microstructure [J]. Proceedings of rock mechanics in the Nordic Countries, 2010: 9 ? 12.
    [58] LISJAK A, GRASSELLI G. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(4): 301 ? 314. doi: 10.1016/j.jrmge.2013.12.007
    [59] CUNDALL P A. The measurement and analysis of acceleration in rock slopes [D]. London: Imperial College Science and Technology,University of London, 1971.
    [60] PENG J, WONG L N Y, TEH C I, et al. Modeling micro-cracking behavior of Bukit Timah granite using grain-based model [J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 135 ? 154. doi: 10.1007/s00603-017-1316-x
    [61] HOFMANN H, BABADAGLI T, YOON J S, et al. A grain based modeling study of mineralogical factors affecting strength, elastic behavior and micro fracture development during compression tests in granites [J]. Engineering Fracture Mechanics, 2015, 147: 261 ? 275. doi: 10.1016/j.engfracmech.2015.09.008
    [62] XIE H, LI C, HE Z, et al. Experimental study on rock mechanical behavior retaining the in situ geological conditions at different depths [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104548. doi: 10.1016/j.ijrmms.2020.104548
  • 加載中
圖(15) / 表(3)
計量
  • 文章訪問數:  422
  • HTML全文瀏覽量:  76
  • PDF下載量:  47
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-01-13
  • 修回日期:  2022-06-28
  • 網絡出版日期:  2022-07-19
  • 刊出日期:  2023-10-10

目錄

    /

    返回文章
    返回