留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

輸電線路共振舞動機理試驗研究

謝獻忠 張淳淇 林文欣 彭劍

謝獻忠, 張淳淇, 林文欣, 彭劍. 輸電線路共振舞動機理試驗研究[J]. 工程力學, 2023, 40(10): 71-80. doi: 10.6052/j.issn.1000-4750.2022.01.0059
引用本文: 謝獻忠, 張淳淇, 林文欣, 彭劍. 輸電線路共振舞動機理試驗研究[J]. 工程力學, 2023, 40(10): 71-80. doi: 10.6052/j.issn.1000-4750.2022.01.0059
XIE Xian-zhong, ZHANG Chun-qi, LIN Wen-xin, PENG Jian. EXPERIMENTAL STUDY ON RESONANCE GALLOPING MECHANISM OF TRANSMISSION LINE[J]. Engineering Mechanics, 2023, 40(10): 71-80. doi: 10.6052/j.issn.1000-4750.2022.01.0059
Citation: XIE Xian-zhong, ZHANG Chun-qi, LIN Wen-xin, PENG Jian. EXPERIMENTAL STUDY ON RESONANCE GALLOPING MECHANISM OF TRANSMISSION LINE[J]. Engineering Mechanics, 2023, 40(10): 71-80. doi: 10.6052/j.issn.1000-4750.2022.01.0059

輸電線路共振舞動機理試驗研究

doi: 10.6052/j.issn.1000-4750.2022.01.0059
基金項目: 湖南省自然科學基金項目(2023JJ30259);國家自然科學基金項目(11272119)
詳細信息
    作者簡介:

    張淳淇 (1998?),女,湖南人,碩士生,主要從事結構振動研究(E-mail: chunqiz@foxmail.com)

    林文欣 (1998?),女,湖南人,碩士生,主要從事結構振動研究(E-mail: 272892461@qq.com)

    彭 劍 (1982?),男,湖南人,副教授,博士,主要從事非線性振動理論與控制研究(E-mail: pengjian@hnu.edu.cn)

    通訊作者:

    謝獻忠 (1968?),男,湖南人,教授,博士,主要從事結構振動與控制研究(E-mail: xianzhongx@163.com)

  • 中圖分類號: O322;TM75

EXPERIMENTAL STUDY ON RESONANCE GALLOPING MECHANISM OF TRANSMISSION LINE

  • 摘要: 該文開展了輸電線路共振舞動機理試驗研究,以湖南省某220 kV輸電線路工程為原型,基于動力相似原理,設計制作了塔線體系試驗模型。為最大限度保有輸電線路本身的動力特性,設計研發了一套非接觸式電磁激勵系統。采用單相面內激勵、三相面內激勵以及三相面外激勵等不同的激勵工況,對輸電線路的強迫振動特性進行了測試和分析。結果表明:系統共振是引發輸電線大幅舞動的主要機理,輸電線路發生大幅舞動的激勵頻率均趨近于系統的各階固有頻率且振型一致。塔-線之間、相-相之間存在顯著的耦合振動現象,非激勵相也會發生大幅舞動,其幅值有時甚至超過激勵相,相與相之間存在明顯的動力吸振現象。三相輸電線路在共振狀態下的振動形式非常復雜,從時程上看,相間存在同步、反向同步和延遲同步等振動形式,且相間常常發生同周期拍振或異周期拍振現象,異周期拍振時,振幅此消彼長,能量在相間往復傳遞。從軌跡上看,有直線形、橢圓形、新月形、“8”字形、甚至混沌運動等,且由于隨機干擾的影響,軌跡會發生漂移現象。
  • 圖  1  塔線體系試驗模型及非接觸激勵測試系統

    Figure  1.  Tower-line system test model and non-contact excitation&test system

    圖  2  非接觸激勵及測試系統示意圖

    Figure  2.  Schematic of non-contact excitation&test system

    圖  3  A相跨中、四分點最大振幅隨激勵頻率的變化曲線

    Figure  3.  Curve of the maximum amplitude with excitation frequency at phase A mid-span and quarter point

    圖  4  三相輸電線路跨中振動特性 (1.55 Hz)

    Figure  4.  Mid-span vibration characteristics of three phase transmission line (1.55 Hz)

    圖  5  三相輸電線路跨中振動特性 (1.61 Hz)

    Figure  5.  Mid-span vibration characteristics of three phase transmission line (1.61 Hz)

    圖  6  三相輸電線路四分點振動特性 (1.72 Hz)

    Figure  6.  Quarter point vibration characteristics of three phase transmission line (1.72 Hz)

    圖  7  三相輸電線路跨中振動特性 (2.64 Hz)

    Figure  7.  Mid-span vibration characteristics of three phase transmission line (2.64 Hz)

    圖  8  A相位移信號頻譜分析圖

    Figure  8.  Spectrum analysis diagram of displacement signal of phase A

    圖  9  三相線路最大振幅隨激勵頻率變化曲線

    Figure  9.  Variation curve of maximum amplitude of three phase transmission line with excitation frequency

    圖  10  三相輸電線路跨中振動特性 (1.55 Hz)

    Figure  10.  Mid-span vibration characteristics of three phase transmission line (1.55 Hz)

    圖  11  三相輸電線路跨中振動特性 (1.61 Hz)

    Figure  11.  Mid-span vibration characteristics of three phase transmission line (1.61 Hz)

    圖  12  三相輸電線路四分點振動特性 (1.72 Hz)

    Figure  12.  Quarter point vibration characteristics of three phase transmission line (1.72 Hz)

    圖  13  三相輸電線路跨中振動特性 (2.64 Hz)

    Figure  13.  Mid-span vibration characteristics of three phase transmission line (2.64 Hz)

    圖  14  三相線路最大振幅隨激勵頻率變化曲線

    Figure  14.  Variation curve of maximum amplitude of three phase transmission line with excitation frequency

    圖  15  三相輸電線路跨中振動特性 (0.87 Hz)

    Figure  15.  Mid-span vibration characteristics of three phase transmission line (0.87 Hz)

    圖  16  三相輸電線路四分點振動特性 (1.70 Hz)

    Figure  16.  Quarter point vibration characteristics of three phase transmission line (1.70 Hz)

    圖  17  三相輸電線路跨中振動特性 (2.58 Hz)

    Figure  17.  Mid-span vibration characteristics of three phase transmission line (2.58 Hz)

    表  1  模型物理參數值

    Table  1.   Physical parameter value of model

    物理量原型參數模型參數
    孤立檔檔距/m35217.6
    橫截面積/mm24521.13
    導線彈性模量/MPa69 0002.09×105
    導線線密度/(kg/m)1.5140.229
    導線密度/(kg/m3)3350203010
    導線放線應力/MPa60181.8
    下載: 導出CSV

    表  2  模態參數

    Table  2.   Modal Parameters

    振型階數振型描述測試阻尼比測試頻率/Hz仿真計算頻率/Hz頻率誤差/(%)
    一階振型面外一階(單半波)0.00460.870.843.45
    二階振型面內一階(單半波)0.00511.561.634.49
    三階振型面內二階(單半波)0.00531.611.673.73
    四階振型面外二階(雙半波)0.00481.701.681.18
    五階振型面內三階(雙半波)0.00531.721.710.58
    六階振型面外三階(三半波)0.00442.592.513.09
    七階振型面內四階(三半波)0.00482.652.601.89
    下載: 導出CSV

    黑人大屌丝逼逼
  • [1] DEN HARTOG J P. Transmission line vibration due to sleet [J]. Transactions of the American Institute of Electrical Engineers, 1932, 51(4): 1074 ? 1086. doi: 10.1109/T-AIEE.1932.5056223
    [2] NIGOL O, BUCHAN P G. Conductor galloping-Part II Torsional mechanism [J]. IEEE Transactions on Power Apparatus & Systems, 1981, 100(2): 708 ? 720.
    [3] YU P, SHAH A H, POPPLEWELL N. Inertially coupled galloping of iced conductors [J]. Journal of Applied Mechanics, 1992, 59(1): 140 ? 145. doi: 10.1115/1.2899419
    [4] JONES K F. Coupled vertical and horizontal galloping closure [J]. Journal of Engineering Mechanics-ASCE, 1993, 118(1): 92 ? 107.
    [5] YU P, DESAI Y M, POPPLEWELL N. Three-degree-of- freedom model for galloping. Part I: Formulation [J]. Journal of Engineering Mechanics-ASCE, 1993, 119(12): 2404 ? 2425. doi: 10.1061/(ASCE)0733-9399(1993)119:12(2404)
    [6] YU P, DESAI Y M, POPPLEWELL N. Three-degree-of- freedom model for galloping. Part II: Solutions [J]. Journal of Engineering Mechanics-ASCE, 1993, 119(12): 2426 ? 2448. doi: 10.1061/(ASCE)0733-9399(1993)119:12(2426)
    [7] LUONGO A, PICCARDO G. Linear instability mechanisms for coupled translational galloping [J]. Journal of Sound and Vibration, 2005, 288(4): 1027 ? 1047.
    [8] 王躍方, 趙光曦. 三自由度偏心索風致振動穩定性分析[J]. 工程力學, 2012, 29(8): 14 ? 21. doi: 10.6052/j.issn.1000-4750.2010.11.0803

    WANG Yuefang, ZHAO Guangxi. Stability analysis for wind-induced vibration of 3-degree-of-freedom eccentric cables [J]. Engineering Mechanics, 2012, 29(8): 14 ? 21. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.11.0803
    [9] 蔡君艷, 劉習軍, 張素俠. 覆冰四分裂導線舞動近似解析解分析[J]. 工程力學, 2013, 30(5): 305 ? 310, 316. doi: 10.6052/j.issn.1000-4750.2012.01.0031

    CAI Junyan, LIU Xijun, ZHANG Suxia. Analysis of approximate analytical solution on galloping of iced quad bundle conductors [J]. Engineering Mechanics, 2013, 30(5): 305 ? 310, 316. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.01.0031
    [10] 霍濤, 晏致濤, 李正良, 等. 考慮彈性邊界曲梁模型的覆冰輸電線舞動分析[J]. 工程力學, 2015, 32(1): 137 ? 144. doi: 10.6052/j.issn.1000-4750.2013.07.0692

    HUO Tao, YAN Zhitao, LI Zhengliang, et al. Multi-scale method galloping analysis of iced transmission lines based on curved-beam model considering elastic boundary conditions [J]. Engineering Mechanics, 2015, 32(1): 137 ? 144. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.07.0692
    [11] 樓文娟, 余江, 姜雄, 等. 覆冰導線三自由度耦合舞動穩定性判定及氣動阻尼研究[J]. 土木工程學報, 2017, 50(2): 55 ? 64.

    LOU Wenjuan, YU Jiang, JIANG Xiong, et al. Stability evaluation and aerodynamic damping study on three-degree-of-freedom coupled galloping of iced conductors [J]. China Civil Engineering Journal, 2017, 50(2): 55 ? 64. (in Chinese)
    [12] 霍冰, 劉習軍, 張銳. 高階扭轉模態耦合下覆冰導線的穩定性和影響因素分析[J]. 工程力學, 2020, 37(2): 241 ? 249. doi: 10.6052/j.issn.1000-4750.2019.01.0093

    HUO Bing, LIU Xijun, ZHANG Rui. Stability and influence factors on iced conductor with the participation of multi-ordered torsional modes [J]. Engineering Mechanics, 2020, 37(2): 241 ? 249. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0093
    [13] 陳波, 宋欣欣, 吳鏡泊. 輸電塔線體系力學模型研究進展[J]. 工程力學, 2021, 38(5): 1 ? 21, 49. doi: 10.6052/j.issn.1000-4750.2020.08.ST07

    CHEN Bo, SONG Xinxin, WU Jingbo. Advances in mechanical models of transmission tower-line systems [J]. Engineering Mechanics, 2021, 38(5): 1 ? 21, 49. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.ST07
    [14] 鄒明, 劉小會, 蔡萌琦, 等. 考慮尾流效應的新月形覆冰四分裂輸電線舞動穩定性[J]. 噪聲與振動控制, 2021, 41(2): 34 ? 41. doi: 10.3969/j.issn.1006-1355.2021.02.006

    ZOU Ming, LIU Xiaohui, CAI Mengqi, et al. Galloping stability analysis of quad-bundled conductors with crescent ice covering considering wake effect [J]. Noise and Vibration Control, 2021, 41(2): 34 ? 41. (in Chinese) doi: 10.3969/j.issn.1006-1355.2021.02.006
    [15] 胡基才. 高壓輸電導線舞動機理與數值仿真應用研究[D]. 武漢: 武漢大學, 2013.

    HU Jicai. Research on the mechanisms and numerical simulation application to the galloping of high-voltage power transmission lines [D]. Wuhan: Wuhan University, 2013. (in Chinese)
    [16] 張博, 陳文禮, 潘宇, 等. 輸電導線風致舞動的風洞試驗研究[J]. 地震工程與工程振動, 2017, 37(2): 117 ? 123.

    ZHANG Bo, CHEN Wenli, PAN Yu, et al. The wind tunnel test on galloping of an iced conductor [J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(2): 117 ? 123. (in Chinese)
    [17] LUONGO A, PICCARDO G. Non-linear galloping of sagged cables in 1: 2 internal resonance [J]. Journal of Sound and Vibration, 1998, 214(5): 915 ? 940. doi: 10.1006/jsvi.1998.1583
    [18] 蔡廷湘. 輸電線舞動新機理研究[J]. 中國電力, 1998, 31(10): 62 ? 66.

    CAI Tingxiang. A new mechanism of transmission line galloping [J]. Electric Power, 1998, 31(10): 62 ? 66. (in Chinese)
    [19] XIE X Z, HU X, PENG J, et al. Refined modeling and free vibration of two-span suspended transmission lines [J]. Acta Mechanica, 2017, 228(2): 673 ? 681. doi: 10.1007/s00707-016-1730-2
    [20] 閔光云, 劉小會, 嚴波, 等. 兩檔覆冰輸電線的動力學建模及其舞動特性研究[J]. 應用力學學報, 2021, 38(4): 1684 ? 1689.

    MIN Guangyun, LIU Xiaohui, YAN Bo, et al. Dynamic modeling and galloping characteristics of two-span iced transmission lines [J]. Chinese Journal of Applied Mechanics, 2021, 38(4): 1684 ? 1689. (in Chinese)
    [21] LIU X H, YANG S G, WU C, et al. Planar nonlinear galloping of iced transmission lines under forced self-excitation conditions [J]. Discrete Dynamics in Nature and Society, 2021, 2021(4): 1 ? 20. doi: 10.1155/2021/6686028
    [22] CUI F J, ZHANG S X, HUO B, et al. Analysis of stability and modal interaction for multi-modal coupling galloping of iced transmission lines [J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 102: 1 ? 27.
  • 加載中
圖(18) / 表(2)
計量
  • 文章訪問數:  501
  • HTML全文瀏覽量:  95
  • PDF下載量:  61
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-01-12
  • 修回日期:  2022-04-18
  • 網絡出版日期:  2022-04-29
  • 刊出日期:  2023-10-10

目錄

    /

    返回文章
    返回